Reducing Variance in Meta-Learning via Laplace Approximation for Regression Tasks
- URL: http://arxiv.org/abs/2410.01476v2
- Date: Wed, 23 Oct 2024 12:53:49 GMT
- Title: Reducing Variance in Meta-Learning via Laplace Approximation for Regression Tasks
- Authors: Alfredo Reichlin, Gustaf Tegnér, Miguel Vasco, Hang Yin, Mårten Björkman, Danica Kragic,
- Abstract summary: We address the problem of variance reduction in gradient-based meta-learning.
We propose a novel approach that reduces the variance of the gradient estimate by weighing each support point individually.
- Score: 23.33263252557512
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Given a finite set of sample points, meta-learning algorithms aim to learn an optimal adaptation strategy for new, unseen tasks. Often, this data can be ambiguous as it might belong to different tasks concurrently. This is particularly the case in meta-regression tasks. In such cases, the estimated adaptation strategy is subject to high variance due to the limited amount of support data for each task, which often leads to sub-optimal generalization performance. In this work, we address the problem of variance reduction in gradient-based meta-learning and formalize the class of problems prone to this, a condition we refer to as \emph{task overlap}. Specifically, we propose a novel approach that reduces the variance of the gradient estimate by weighing each support point individually by the variance of its posterior over the parameters. To estimate the posterior, we utilize the Laplace approximation, which allows us to express the variance in terms of the curvature of the loss landscape of our meta-learner. Experimental results demonstrate the effectiveness of the proposed method and highlight the importance of variance reduction in meta-learning.
Related papers
- Hessian Aware Low-Rank Perturbation for Order-Robust Continual Learning [19.850893012601638]
Continual learning aims to learn a series of tasks sequentially without forgetting the knowledge acquired from the previous ones.
We propose the Hessian Aware Low-Rank Perturbation algorithm for continual learning.
arXiv Detail & Related papers (2023-11-26T01:44:01Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - Scalable Bayesian Meta-Learning through Generalized Implicit Gradients [64.21628447579772]
Implicit Bayesian meta-learning (iBaML) method broadens the scope of learnable priors, but also quantifies the associated uncertainty.
Analytical error bounds are established to demonstrate the precision and efficiency of the generalized implicit gradient over the explicit one.
arXiv Detail & Related papers (2023-03-31T02:10:30Z) - An Investigation of the Bias-Variance Tradeoff in Meta-Gradients [53.28925387487846]
Hessian estimation always adds bias and can also add variance to meta-gradient estimation.
We study the bias and variance tradeoff arising from truncated backpropagation and sampling correction.
arXiv Detail & Related papers (2022-09-22T20:33:05Z) - Adaptive Meta-learner via Gradient Similarity for Few-shot Text
Classification [11.035878821365149]
We propose a novel Adaptive Meta-learner via Gradient Similarity (AMGS) to improve the model generalization ability to a new task.
Experimental results on several benchmarks demonstrate that the proposed AMGS consistently improves few-shot text classification performance.
arXiv Detail & Related papers (2022-09-10T16:14:53Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - An Information-Theoretic Analysis of the Impact of Task Similarity on
Meta-Learning [44.320945743871285]
We present novel information-theoretic bounds on the average absolute value of the meta-generalization gap.
Our bounds explicitly capture the impact of task relatedness, the number of tasks, and the number of data samples per task on the meta-generalization gap.
arXiv Detail & Related papers (2021-01-21T01:38:16Z) - A Distribution-Dependent Analysis of Meta-Learning [13.24264919706183]
Key problem in the theory of meta-learning is to understand how the task distributions influence transfer risk.
In this paper, we give distribution-dependent lower bounds on the transfer risk of any algorithm.
We show that a novel, weighted version of the so-called biased regularized regression method is able to match these lower bounds up to a fixed constant factor.
arXiv Detail & Related papers (2020-10-31T19:36:15Z) - Regularizing Meta-Learning via Gradient Dropout [102.29924160341572]
meta-learning models are prone to overfitting when there are no sufficient training tasks for the meta-learners to generalize.
We introduce a simple yet effective method to alleviate the risk of overfitting for gradient-based meta-learning.
arXiv Detail & Related papers (2020-04-13T10:47:02Z) - Domain Adaptation: Learning Bounds and Algorithms [80.85426994513541]
We introduce a novel distance between distributions, discrepancy distance, that is tailored to adaptation problems with arbitrary loss functions.
We derive novel generalization bounds for domain adaptation for a wide family of loss functions.
We also present a series of novel adaptation bounds for large classes of regularization-based algorithms.
arXiv Detail & Related papers (2009-02-19T18:42:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.