TorchSISSO: A PyTorch-Based Implementation of the Sure Independence Screening and Sparsifying Operator for Efficient and Interpretable Model Discovery
- URL: http://arxiv.org/abs/2410.01752v1
- Date: Wed, 2 Oct 2024 17:02:17 GMT
- Title: TorchSISSO: A PyTorch-Based Implementation of the Sure Independence Screening and Sparsifying Operator for Efficient and Interpretable Model Discovery
- Authors: Madhav Muthyala, Farshud Sorourifar, Joel A. Paulson,
- Abstract summary: Symbolic regression (SR) is a powerful machine learning approach that searches for both the structure and parameters of algebraic models.
In this work, we introduce TorchSISSO, a native Python implementation built in the PyTorch framework.
We demonstrate that TorchSISSO matches or exceeds the performance of the original SISSO across a range of tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Symbolic regression (SR) is a powerful machine learning approach that searches for both the structure and parameters of algebraic models, offering interpretable and compact representations of complex data. Unlike traditional regression methods, SR explores progressively complex feature spaces, which can uncover simple models that generalize well, even from small datasets. Among SR algorithms, the Sure Independence Screening and Sparsifying Operator (SISSO) has proven particularly effective in the natural sciences, helping to rediscover fundamental physical laws as well as discover new interpretable equations for materials property modeling. However, its widespread adoption has been limited by performance inefficiencies and the challenges posed by its FORTRAN-based implementation, especially in modern computing environments. In this work, we introduce TorchSISSO, a native Python implementation built in the PyTorch framework. TorchSISSO leverages GPU acceleration, easy integration, and extensibility, offering a significant speed-up and improved accuracy over the original. We demonstrate that TorchSISSO matches or exceeds the performance of the original SISSO across a range of tasks, while dramatically reducing computational time and improving accessibility for broader scientific applications.
Related papers
- Discovering symbolic expressions with parallelized tree search [59.92040079807524]
Symbolic regression plays a crucial role in scientific research thanks to its capability of discovering concise and interpretable mathematical expressions from data.
Existing algorithms have faced a critical bottleneck of accuracy and efficiency over a decade when handling problems of complexity.
We introduce a parallelized tree search (PTS) model to efficiently distill generic mathematical expressions from limited data.
arXiv Detail & Related papers (2024-07-05T10:41:15Z) - Deep Generative Symbolic Regression [83.04219479605801]
Symbolic regression aims to discover concise closed-form mathematical equations from data.
Existing methods, ranging from search to reinforcement learning, fail to scale with the number of input variables.
We propose an instantiation of our framework, Deep Generative Symbolic Regression.
arXiv Detail & Related papers (2023-12-30T17:05:31Z) - Reduced Simulations for High-Energy Physics, a Middle Ground for
Data-Driven Physics Research [0.0]
Subatomic particle track reconstruction is a vital task in High-Energy Physics experiments.
We provide the REDuced VIrtual Detector (REDVID) as a complexity-reduced detector model and particle collision event simulator combo.
arXiv Detail & Related papers (2023-08-30T12:50:45Z) - Efficient Model-Free Exploration in Low-Rank MDPs [76.87340323826945]
Low-Rank Markov Decision Processes offer a simple, yet expressive framework for RL with function approximation.
Existing algorithms are either (1) computationally intractable, or (2) reliant upon restrictive statistical assumptions.
We propose the first provably sample-efficient algorithm for exploration in Low-Rank MDPs.
arXiv Detail & Related papers (2023-07-08T15:41:48Z) - Complex-valued Adaptive System Identification via Low-Rank Tensor
Decomposition [3.268878947476012]
In this work we derive two new architectures to allow the processing of complex-valued signals.
We show that these extensions are able to surpass the trivial, complex-valued extension of the original architecture in terms of performance.
arXiv Detail & Related papers (2023-06-28T07:01:08Z) - HyperImpute: Generalized Iterative Imputation with Automatic Model
Selection [77.86861638371926]
We propose a generalized iterative imputation framework for adaptively and automatically configuring column-wise models.
We provide a concrete implementation with out-of-the-box learners, simulators, and interfaces.
arXiv Detail & Related papers (2022-06-15T19:10:35Z) - Great Truths are Always Simple: A Rather Simple Knowledge Encoder for
Enhancing the Commonsense Reasoning Capacity of Pre-Trained Models [89.98762327725112]
Commonsense reasoning in natural language is a desired ability of artificial intelligent systems.
For solving complex commonsense reasoning tasks, a typical solution is to enhance pre-trained language models(PTMs) with a knowledge-aware graph neural network(GNN) encoder.
Despite the effectiveness, these approaches are built on heavy architectures, and can't clearly explain how external knowledge resources improve the reasoning capacity of PTMs.
arXiv Detail & Related papers (2022-05-04T01:27:36Z) - Toward Fast, Flexible, and Robust Low-Light Image Enhancement [87.27326390675155]
We develop a new Self-Calibrated Illumination (SCI) learning framework for fast, flexible, and robust brightening images in real-world low-light scenarios.
Considering the computational burden of the cascaded pattern, we construct the self-calibrated module which realizes the convergence between results of each stage.
We make comprehensive explorations to SCI's inherent properties including operation-insensitive adaptability and model-irrelevant generality.
arXiv Detail & Related papers (2022-04-21T14:40:32Z) - Local Function Complexity for Active Learning via Mixture of Gaussian
Processes [5.382740428160009]
Inhomogeneities in real-world data, due to changes in the observation noise level or variations in the structural complexity of the source function, pose a unique set of challenges for statistical inference.
In this paper, we draw on recent theoretical results on the estimation of local function complexity (LFC)
We derive and estimate the Gaussian process regression (GPR)-based analog of the LPS-based LFC and use it as a substitute in the above framework to make it robust and scalable.
arXiv Detail & Related papers (2019-02-27T17:55:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.