A GEN AI Framework for Medical Note Generation
- URL: http://arxiv.org/abs/2410.01841v1
- Date: Fri, 27 Sep 2024 23:05:02 GMT
- Title: A GEN AI Framework for Medical Note Generation
- Authors: Hui Yi Leong, Yi Fan Gao, Shuai Ji, Bora Kalaycioglu, Uktu Pamuksuz,
- Abstract summary: MediNotes is an advanced generative AI framework designed to automate the creation of SOAP (Subjective, Objective, Assessment, Plan) notes from medical conversations.
MediNotes integrates Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), and Automatic Speech Recognition (ASR) to capture and process both text and voice inputs in real time or from recorded audio.
- Score: 3.7444770630637167
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The increasing administrative burden of medical documentation, particularly through Electronic Health Records (EHR), significantly reduces the time available for direct patient care and contributes to physician burnout. To address this issue, we propose MediNotes, an advanced generative AI framework designed to automate the creation of SOAP (Subjective, Objective, Assessment, Plan) notes from medical conversations. MediNotes integrates Large Language Models (LLMs), Retrieval-Augmented Generation (RAG), and Automatic Speech Recognition (ASR) to capture and process both text and voice inputs in real time or from recorded audio, generating structured and contextually accurate medical notes. The framework also incorporates advanced techniques like Quantized Low-Rank Adaptation (QLoRA) and Parameter-Efficient Fine-Tuning (PEFT) for efficient model fine-tuning in resource-constrained environments. Additionally, MediNotes offers a query-based retrieval system, allowing healthcare providers and patients to access relevant medical information quickly and accurately. Evaluations using the ACI-BENCH dataset demonstrate that MediNotes significantly improves the accuracy, efficiency, and usability of automated medical documentation, offering a robust solution to reduce the administrative burden on healthcare professionals while improving the quality of clinical workflows.
Related papers
- Comprehensive and Practical Evaluation of Retrieval-Augmented Generation Systems for Medical Question Answering [70.44269982045415]
Retrieval-augmented generation (RAG) has emerged as a promising approach to enhance the performance of large language models (LLMs)
We introduce Medical Retrieval-Augmented Generation Benchmark (MedRGB) that provides various supplementary elements to four medical QA datasets.
Our experimental results reveals current models' limited ability to handle noise and misinformation in the retrieved documents.
arXiv Detail & Related papers (2024-11-14T06:19:18Z) - Efficient Fine-Tuning of Large Language Models for Automated Medical Documentation [6.180195560275004]
This study introduces MediGen, a fine-tuned large language model (LLM) designed to automate the generation of medical reports from medical dialogues.
By leveraging state-of-the-art methodologies for fine-tuning open-source pretrained models, MediGen achieves high accuracy in transcribing and summarizing clinical interactions.
arXiv Detail & Related papers (2024-09-14T06:02:17Z) - Improving Clinical Note Generation from Complex Doctor-Patient Conversation [20.2157016701399]
We present three key contributions to the field of clinical note generation using large language models (LLMs)
First, we introduce CliniKnote, a dataset consisting of 1,200 complex doctor-patient conversations paired with their full clinical notes.
Second, we propose K-SOAP, which enhances traditional SOAPcitepodder20soap (Subjective, Objective, Assessment, and Plan) notes by adding a keyword section at the top, allowing for quick identification of essential information.
Third, we develop an automatic pipeline to generate K-SOAP notes from doctor-patient conversations and benchmark various modern LLMs using various
arXiv Detail & Related papers (2024-08-26T18:39:31Z) - STLLaVA-Med: Self-Training Large Language and Vision Assistant for Medical Question-Answering [58.79671189792399]
STLLaVA-Med is designed to train a policy model capable of auto-generating medical visual instruction data.
We validate the efficacy and data efficiency of STLLaVA-Med across three major medical Visual Question Answering (VQA) benchmarks.
arXiv Detail & Related papers (2024-06-28T15:01:23Z) - Intelligent Clinical Documentation: Harnessing Generative AI for Patient-Centric Clinical Note Generation [0.0]
This paper explores the potential of generative AI (Artificial Intelligence) to streamline the clinical documentation process.
We present a case study demonstrating the application of natural language processing (NLP) and automatic speech recognition (ASR) technologies to transcribe patient-clinician interactions.
The study highlights the benefits of this approach, including time savings, improved documentation quality, and enhanced patient-centered care.
arXiv Detail & Related papers (2024-05-28T16:43:41Z) - Enhancing Clinical Efficiency through LLM: Discharge Note Generation for Cardiac Patients [1.379398224469229]
This study addresses inefficiencies and inaccuracies in creating discharge notes manually, particularly for cardiac patients.
Our research evaluates the capability of large language model (LLM) to enhance the documentation process.
Among the various models assessed, Mistral-7B distinguished itself by accurately generating discharge notes.
arXiv Detail & Related papers (2024-04-08T01:55:28Z) - Enhancing Summarization Performance through Transformer-Based Prompt
Engineering in Automated Medical Reporting [0.49478969093606673]
Two-shot prompting approach in combination with scope and domain context outperforms other methods.
The automated reports are approximately twice as long as the human references.
arXiv Detail & Related papers (2023-11-22T09:51:53Z) - Towards more patient friendly clinical notes through language models and
ontologies [57.51898902864543]
We present a novel approach to automated medical text based on word simplification and language modelling.
We use a new dataset pairs of publicly available medical sentences and a version of them simplified by clinicians.
Our method based on a language model trained on medical forum data generates simpler sentences while preserving both grammar and the original meaning.
arXiv Detail & Related papers (2021-12-23T16:11:19Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
We argue that unlocking this potential requires a systematic way to measure the performance of medical AI models on large-scale heterogeneous data.
We are building MedPerf, an open framework for benchmarking machine learning in the medical domain.
arXiv Detail & Related papers (2021-09-29T18:09:41Z) - Benchmarking Automated Clinical Language Simplification: Dataset,
Algorithm, and Evaluation [48.87254340298189]
We construct a new dataset named MedLane to support the development and evaluation of automated clinical language simplification approaches.
We propose a new model called DECLARE that follows the human annotation procedure and achieves state-of-the-art performance.
arXiv Detail & Related papers (2020-12-04T06:09:02Z) - BiteNet: Bidirectional Temporal Encoder Network to Predict Medical
Outcomes [53.163089893876645]
We propose a novel self-attention mechanism that captures the contextual dependency and temporal relationships within a patient's healthcare journey.
An end-to-end bidirectional temporal encoder network (BiteNet) then learns representations of the patient's journeys.
We have evaluated the effectiveness of our methods on two supervised prediction and two unsupervised clustering tasks with a real-world EHR dataset.
arXiv Detail & Related papers (2020-09-24T00:42:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.