FeelAnyForce: Estimating Contact Force Feedback from Tactile Sensation for Vision-Based Tactile Sensors
- URL: http://arxiv.org/abs/2410.02048v1
- Date: Wed, 2 Oct 2024 21:28:19 GMT
- Title: FeelAnyForce: Estimating Contact Force Feedback from Tactile Sensation for Vision-Based Tactile Sensors
- Authors: Amir-Hossein Shahidzadeh, Gabriele Caddeo, Koushik Alapati, Lorenzo Natale, Cornelia Fermüller, Yiannis Aloimonos,
- Abstract summary: We tackle the problem of estimating 3D contact forces using vision-based tactile sensors.
Our goal is to estimate contact forces over a large range (up to 15 N) on any objects while generalizing across different vision-based tactile sensors.
- Score: 18.88211706267447
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this paper, we tackle the problem of estimating 3D contact forces using vision-based tactile sensors. In particular, our goal is to estimate contact forces over a large range (up to 15 N) on any objects while generalizing across different vision-based tactile sensors. Thus, we collected a dataset of over 200K indentations using a robotic arm that pressed various indenters onto a GelSight Mini sensor mounted on a force sensor and then used the data to train a multi-head transformer for force regression. Strong generalization is achieved via accurate data collection and multi-objective optimization that leverages depth contact images. Despite being trained only on primitive shapes and textures, the regressor achieves a mean absolute error of 4\% on a dataset of unseen real-world objects. We further evaluate our approach's generalization capability to other GelSight mini and DIGIT sensors, and propose a reproducible calibration procedure for adapting the pre-trained model to other vision-based sensors. Furthermore, the method was evaluated on real-world tasks, including weighing objects and controlling the deformation of delicate objects, which relies on accurate force feedback. Project webpage: http://prg.cs.umd.edu/FeelAnyForce
Related papers
- Neural feels with neural fields: Visuo-tactile perception for in-hand
manipulation [57.60490773016364]
We combine vision and touch sensing on a multi-fingered hand to estimate an object's pose and shape during in-hand manipulation.
Our method, NeuralFeels, encodes object geometry by learning a neural field online and jointly tracks it by optimizing a pose graph problem.
Our results demonstrate that touch, at the very least, refines and, at the very best, disambiguates visual estimates during in-hand manipulation.
arXiv Detail & Related papers (2023-12-20T22:36:37Z) - On the Importance of Accurate Geometry Data for Dense 3D Vision Tasks [61.74608497496841]
Training on inaccurate or corrupt data induces model bias and hampers generalisation capabilities.
This paper investigates the effect of sensor errors for the dense 3D vision tasks of depth estimation and reconstruction.
arXiv Detail & Related papers (2023-03-26T22:32:44Z) - Tactile-Filter: Interactive Tactile Perception for Part Mating [54.46221808805662]
Humans rely on touch and tactile sensing for a lot of dexterous manipulation tasks.
vision-based tactile sensors are being widely used for various robotic perception and control tasks.
We present a method for interactive perception using vision-based tactile sensors for a part mating task.
arXiv Detail & Related papers (2023-03-10T16:27:37Z) - Collision-aware In-hand 6D Object Pose Estimation using Multiple
Vision-based Tactile Sensors [4.886250215151643]
We reason on the possible spatial configurations of the sensors along the object surface.
We use selected sensors configurations to optimize over the space of 6D poses.
We rank the obtained poses by penalizing those that are in collision with the sensors.
arXiv Detail & Related papers (2023-01-31T14:35:26Z) - Tac2Pose: Tactile Object Pose Estimation from the First Touch [6.321662423735226]
We present Tac2Pose, an object-specific approach to tactile pose estimation from the first touch for known objects.
We simulate the contact shapes that a dense set of object poses would produce on the sensor.
We obtain contact shapes from the sensor with an object-agnostic calibration step that maps RGB tactile observations to binary contact shapes.
arXiv Detail & Related papers (2022-04-25T14:43:48Z) - A soft thumb-sized vision-based sensor with accurate all-round force
perception [19.905154050561013]
Vision-based haptic sensors have emerged as a promising approach to robotic touch due to affordable high-resolution cameras and successful computer-vision techniques.
We present a robust, soft, low-cost, vision-based, thumb-sized 3D haptic sensor named Insight.
arXiv Detail & Related papers (2021-11-10T20:46:23Z) - Elastic Tactile Simulation Towards Tactile-Visual Perception [58.44106915440858]
We propose Elastic Interaction of Particles (EIP) for tactile simulation.
EIP models the tactile sensor as a group of coordinated particles, and the elastic property is applied to regulate the deformation of particles during contact.
We further propose a tactile-visual perception network that enables information fusion between tactile data and visual images.
arXiv Detail & Related papers (2021-08-11T03:49:59Z) - Active 3D Shape Reconstruction from Vision and Touch [66.08432412497443]
Humans build 3D understandings of the world through active object exploration, using jointly their senses of vision and touch.
In 3D shape reconstruction, most recent progress has relied on static datasets of limited sensory data such as RGB images, depth maps or haptic readings.
We introduce a system composed of: 1) a haptic simulator leveraging high spatial resolution vision-based tactile sensors for active touching of 3D objects; 2) a mesh-based 3D shape reconstruction model that relies on tactile or visuotactile priors to guide the shape exploration; and 3) a set of data-driven solutions with either tactile or visuo
arXiv Detail & Related papers (2021-07-20T15:56:52Z) - OmniTact: A Multi-Directional High Resolution Touch Sensor [109.28703530853542]
Existing tactile sensors are either flat, have small sensitive fields or only provide low-resolution signals.
We introduce OmniTact, a multi-directional high-resolution tactile sensor.
We evaluate the capabilities of OmniTact on a challenging robotic control task.
arXiv Detail & Related papers (2020-03-16T01:31:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.