Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data
- URL: http://arxiv.org/abs/2410.02056v1
- Date: Wed, 2 Oct 2024 22:05:36 GMT
- Title: Synthio: Augmenting Small-Scale Audio Classification Datasets with Synthetic Data
- Authors: Sreyan Ghosh, Sonal Kumar, Zhifeng Kong, Rafael Valle, Bryan Catanzaro, Dinesh Manocha,
- Abstract summary: We present Synthio, a novel approach for augmenting small-scale audio classification datasets with synthetic data.
To overcome the first challenge, we align the generations of the T2A model with the small-scale dataset using preference optimization.
To address the second challenge, we propose a novel caption generation technique that leverages the reasoning capabilities of Large Language Models.
- Score: 69.7174072745851
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present Synthio, a novel approach for augmenting small-scale audio classification datasets with synthetic data. Our goal is to improve audio classification accuracy with limited labeled data. Traditional data augmentation techniques, which apply artificial transformations (e.g., adding random noise or masking segments), struggle to create data that captures the true diversity present in real-world audios. To address this shortcoming, we propose to augment the dataset with synthetic audio generated from text-to-audio (T2A) diffusion models. However, synthesizing effective augmentations is challenging because not only should the generated data be acoustically consistent with the underlying small-scale dataset, but they should also have sufficient compositional diversity. To overcome the first challenge, we align the generations of the T2A model with the small-scale dataset using preference optimization. This ensures that the acoustic characteristics of the generated data remain consistent with the small-scale dataset. To address the second challenge, we propose a novel caption generation technique that leverages the reasoning capabilities of Large Language Models to (1) generate diverse and meaningful audio captions and (2) iteratively refine their quality. The generated captions are then used to prompt the aligned T2A model. We extensively evaluate Synthio on ten datasets and four simulated limited-data settings. Results indicate our method consistently outperforms all baselines by 0.1%-39% using a T2A model trained only on weakly-captioned AudioSet.
Related papers
- Generating Realistic Tabular Data with Large Language Models [49.03536886067729]
Large language models (LLM) have been used for diverse tasks, but do not capture the correct correlation between the features and the target variable.
We propose a LLM-based method with three important improvements to correctly capture the ground-truth feature-class correlation in the real data.
Our experiments show that our method significantly outperforms 10 SOTA baselines on 20 datasets in downstream tasks.
arXiv Detail & Related papers (2024-10-29T04:14:32Z) - Video DataFlywheel: Resolving the Impossible Data Trinity in Video-Language Understanding [61.89781979702939]
This study quantitatively reveals an "impossible trinity" among data quantity, diversity, and quality in pre-training datasets.
Recent efforts seek to refine large-scale, diverse ASR datasets compromised by low quality through synthetic annotations.
We introduce the Video DataFlywheel framework, which iteratively refines video annotations with improved noise control methods.
arXiv Detail & Related papers (2024-09-29T03:33:35Z) - Contrastive Learning from Synthetic Audio Doppelgangers [1.3754952818114714]
We propose a solution to both the data scale and transformation limitations, leveraging synthetic audio.
By randomly perturbing the parameters of a sound synthesizer, we generate audio doppelg"angers-synthetic positive pairs with causally manipulated variations in timbre, pitch, and temporal envelopes.
Despite the shift to randomly generated synthetic data, our method produces strong representations, competitive with real data on standard audio classification benchmarks.
arXiv Detail & Related papers (2024-06-09T21:44:06Z) - Real Acoustic Fields: An Audio-Visual Room Acoustics Dataset and Benchmark [65.79402756995084]
Real Acoustic Fields (RAF) is a new dataset that captures real acoustic room data from multiple modalities.
RAF is the first dataset to provide densely captured room acoustic data.
arXiv Detail & Related papers (2024-03-27T17:59:56Z) - Schrodinger Bridges Beat Diffusion Models on Text-to-Speech Synthesis [35.16243386407448]
Bridge-TTS is a novel TTS system that substitutes the noisy Gaussian prior in established diffusion-based TTS methods with a clean and deterministic one.
Specifically, we leverage the latent representation obtained from text input as our prior, and build a fully tractable Schrodinger bridge between it and the ground-truth mel-spectrogram.
arXiv Detail & Related papers (2023-12-06T13:31:55Z) - TarGEN: Targeted Data Generation with Large Language Models [51.87504111286201]
TarGEN is a multi-step prompting strategy for generating high-quality synthetic datasets.
We augment TarGEN with a method known as self-correction empowering LLMs to rectify inaccurately labeled instances.
A comprehensive analysis of the synthetic dataset compared to the original dataset reveals similar or higher levels of dataset complexity and diversity.
arXiv Detail & Related papers (2023-10-27T03:32:17Z) - Make-An-Audio 2: Temporal-Enhanced Text-to-Audio Generation [72.7915031238824]
Large diffusion models have been successful in text-to-audio (T2A) synthesis tasks.
They often suffer from common issues such as semantic misalignment and poor temporal consistency.
We propose Make-an-Audio 2, a latent diffusion-based T2A method that builds on the success of Make-an-Audio.
arXiv Detail & Related papers (2023-05-29T10:41:28Z) - Using growth transform dynamical systems for spatio-temporal data
sonification [9.721342507747158]
Sonification, or encoding information in meaningful audio signatures, has several advantages in augmenting or replacing traditional visualization methods for human-in-the-loop decision-making.
This paper presents a novel framework for sonifying high-dimensional data using a complex growth transform dynamical system model.
Our algorithm takes as input the data and optimization parameters underlying the learning or prediction task and combines it with the psycho parameters defined by the user.
arXiv Detail & Related papers (2021-08-21T16:25:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.