Fast and Sample Efficient Multi-Task Representation Learning in Stochastic Contextual Bandits
- URL: http://arxiv.org/abs/2410.02068v2
- Date: Wed, 20 Nov 2024 21:52:50 GMT
- Title: Fast and Sample Efficient Multi-Task Representation Learning in Stochastic Contextual Bandits
- Authors: Jiabin Lin, Shana Moothedath, Namrata Vaswani,
- Abstract summary: We study how representation learning can improve the learning efficiency of contextual bandit problems.
We present a new algorithm based on alternating projected gradient descent (GD) and minimization estimator.
- Score: 15.342585350280535
- License:
- Abstract: We study how representation learning can improve the learning efficiency of contextual bandit problems. We study the setting where we play T contextual linear bandits with dimension d simultaneously, and these T bandit tasks collectively share a common linear representation with a dimensionality of r much smaller than d. We present a new algorithm based on alternating projected gradient descent (GD) and minimization estimator to recover a low-rank feature matrix. Using the proposed estimator, we present a multi-task learning algorithm for linear contextual bandits and prove the regret bound of our algorithm. We presented experiments and compared the performance of our algorithm against benchmark algorithms.
Related papers
- A Mirror Descent-Based Algorithm for Corruption-Tolerant Distributed Gradient Descent [57.64826450787237]
We show how to analyze the behavior of distributed gradient descent algorithms in the presence of adversarial corruptions.
We show how to use ideas from (lazy) mirror descent to design a corruption-tolerant distributed optimization algorithm.
Experiments based on linear regression, support vector classification, and softmax classification on the MNIST dataset corroborate our theoretical findings.
arXiv Detail & Related papers (2024-07-19T08:29:12Z) - Indexed Minimum Empirical Divergence-Based Algorithms for Linear Bandits [55.938644481736446]
Indexed Minimum Empirical Divergence (IMED) is a highly effective approach to the multi-armed bandit problem.
It has been observed to empirically outperform UCB-based algorithms and Thompson Sampling.
We present novel linear versions of the IMED algorithm, which we call the family of LinIMED algorithms.
arXiv Detail & Related papers (2024-05-24T04:11:58Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Performance Evaluation and Comparison of a New Regression Algorithm [4.125187280299247]
We compare the performance of a newly proposed regression algorithm against four conventional machine learning algorithms.
The reader is free to replicate our results since we have provided the source code in a GitHub repository.
arXiv Detail & Related papers (2023-06-15T13:01:16Z) - Non-Stationary Representation Learning in Sequential Linear Bandits [22.16801879707937]
We study representation learning for multi-task decision-making in non-stationary environments.
We propose an online algorithm that facilitates efficient decision-making by learning and transferring non-stationary representations in an adaptive fashion.
arXiv Detail & Related papers (2022-01-13T06:13:03Z) - Machine Learning for Online Algorithm Selection under Censored Feedback [71.6879432974126]
In online algorithm selection (OAS), instances of an algorithmic problem class are presented to an agent one after another, and the agent has to quickly select a presumably best algorithm from a fixed set of candidate algorithms.
For decision problems such as satisfiability (SAT), quality typically refers to the algorithm's runtime.
In this work, we revisit multi-armed bandit algorithms for OAS and discuss their capability of dealing with the problem.
We adapt them towards runtime-oriented losses, allowing for partially censored data while keeping a space- and time-complexity independent of the time horizon.
arXiv Detail & Related papers (2021-09-13T18:10:52Z) - Efficient Contextual Bandits with Continuous Actions [102.64518426624535]
We create a computationally tractable algorithm for contextual bandits with continuous actions having unknown structure.
Our reduction-style algorithm composes with most supervised learning representations.
arXiv Detail & Related papers (2020-06-10T19:38:01Z) - Meta-learning with Stochastic Linear Bandits [120.43000970418939]
We consider a class of bandit algorithms that implement a regularized version of the well-known OFUL algorithm, where the regularization is a square euclidean distance to a bias vector.
We show both theoretically and experimentally, that when the number of tasks grows and the variance of the task-distribution is small, our strategies have a significant advantage over learning the tasks in isolation.
arXiv Detail & Related papers (2020-05-18T08:41:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.