FARM: Functional Group-Aware Representations for Small Molecules
- URL: http://arxiv.org/abs/2410.02082v3
- Date: Fri, 01 Aug 2025 22:16:06 GMT
- Title: FARM: Functional Group-Aware Representations for Small Molecules
- Authors: Thao Nguyen, Kuan-Hao Huang, Ge Liu, Martin D. Burke, Ying Diao, Heng Ji,
- Abstract summary: We introduce Functional Group-Aware Representations for Small Molecules (FARM)<n>FARM is a novel model designed to bridge the gap between SMILES, natural language, and molecular graphs.<n>We evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 11 out of 13 tasks.
- Score: 55.281754551202326
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce Functional Group-Aware Representations for Small Molecules (FARM), a novel foundation model designed to bridge the gap between SMILES, natural language, and molecular graphs. The key innovation of FARM lies in its functional group-aware tokenization, which directly incorporates functional group information into SMILES, enriching SMILES with detailed chemical context. For example, instead of using "O" to represent all oxygen atoms, we use specific tokens like "O_ketone" and "O_hydroxyl" to differentiate oxygen atoms belonging to distinct functional groups. This tokenization expands the chemical lexicon, effectively bridging the gap between SMILES and natural language in terms of vocabulary size, ultimately enhancing the model's ability to predict molecular properties. FARM also represents molecules from two perspectives: by (1) using masked language modeling to capture atom-level features and (2) employing graph neural networks to encode the whole molecule topology. FARM leverages contrastive learning to aligns these two views of representations into a unified molecular embedding. We rigorously evaluate FARM on the MoleculeNet dataset, where it achieves state-of-the-art performance on 11 out of 13 tasks. These results highlight FARM's potential to improve molecular representation learning and demonstrate its strong transfer learning capabilities, paving the way for promising applications in drug discovery and pharmaceutical research.
Related papers
- Knowledge-aware contrastive heterogeneous molecular graph learning [77.94721384862699]
We propose a paradigm shift by encoding molecular graphs into Heterogeneous Molecular Graph Learning (KCHML)
KCHML conceptualizes molecules through three distinct graph views-molecular, elemental, and pharmacological-enhanced by heterogeneous molecular graphs and a dual message-passing mechanism.
This design offers a comprehensive representation for property prediction, as well as for downstream tasks such as drug-drug interaction (DDI) prediction.
arXiv Detail & Related papers (2025-02-17T11:53:58Z) - MolX: Enhancing Large Language Models for Molecular Understanding With A Multi-Modal Extension [36.31928599489024]
Large Language Models (LLMs) with their strong task-handling capabilities have shown remarkable advancements across a spectrum of fields.<n>This study seeks to enhance the ability of LLMs to comprehend molecules by equipping them with a multi-modal external module, termed MolX.<n>A hand-crafted molecular fingerprint is incorporated to leverage its embedded domain knowledge.
arXiv Detail & Related papers (2024-06-10T20:25:18Z) - DrugLLM: Open Large Language Model for Few-shot Molecule Generation [20.680942401843772]
DrugLLM learns how to modify molecules in drug discovery by predicting the next molecule based on past modifications.
In computational experiments, DrugLLM can generate new molecules with expected properties based on limited examples.
arXiv Detail & Related papers (2024-05-07T09:18:13Z) - Contrastive Dual-Interaction Graph Neural Network for Molecular Property Prediction [0.0]
We introduce DIG-Mol, a novel self-supervised graph neural network framework for molecular property prediction.
DIG-Mol integrates a momentum distillation network with two interconnected networks to efficiently improve molecular characterization.
We have established DIG-Mol's state-of-the-art performance through extensive experimental evaluation in a variety of molecular property prediction tasks.
arXiv Detail & Related papers (2024-05-04T10:09:27Z) - Unveiling Molecular Moieties through Hierarchical Grad-CAM Graph Explainability [0.0]
The integration of explainable methods to elucidate the specific contributions of molecular substructures to biological activity remains a significant challenge.
We trained 20 GNN models on a dataset of small molecules with the goal of predicting their activity on 20 distinct protein targets from the Kinase family.
We implemented the Hierarchical Grad-CAM graph Explainer framework, enabling an in-depth analysis of the molecular moieties driving protein-ligand binding stabilization.
arXiv Detail & Related papers (2024-01-29T17:23:25Z) - Multi-Modal Representation Learning for Molecular Property Prediction:
Sequence, Graph, Geometry [6.049566024728809]
Deep learning-based molecular property prediction has emerged as a solution to the resource-intensive nature of traditional methods.
In this paper, we propose a novel multi-modal representation learning model, called SGGRL, for molecular property prediction.
To ensure consistency across modalities, SGGRL is trained to maximize the similarity of representations for the same molecule while minimizing similarity for different molecules.
arXiv Detail & Related papers (2024-01-07T02:18:00Z) - MultiModal-Learning for Predicting Molecular Properties: A Framework Based on Image and Graph Structures [2.5563339057415218]
MolIG is a novel MultiModaL molecular pre-training framework for predicting molecular properties based on Image and Graph structures.
It amalgamates the strengths of both molecular representation forms.
It exhibits enhanced performance in downstream tasks pertaining to molecular property prediction within benchmark groups.
arXiv Detail & Related papers (2023-11-28T10:28:35Z) - Bi-level Contrastive Learning for Knowledge-Enhanced Molecule
Representations [55.42602325017405]
We propose a novel method called GODE, which takes into account the two-level structure of individual molecules.
By pre-training two graph neural networks (GNNs) on different graph structures, combined with contrastive learning, GODE fuses molecular structures with their corresponding knowledge graph substructures.
When fine-tuned across 11 chemical property tasks, our model outperforms existing benchmarks, registering an average ROC-AUC uplift of 13.8% for classification tasks and an average RMSE/MAE enhancement of 35.1% for regression tasks.
arXiv Detail & Related papers (2023-06-02T15:49:45Z) - Atomic and Subgraph-aware Bilateral Aggregation for Molecular
Representation Learning [57.670845619155195]
We introduce a new model for molecular representation learning called the Atomic and Subgraph-aware Bilateral Aggregation (ASBA)
ASBA addresses the limitations of previous atom-wise and subgraph-wise models by incorporating both types of information.
Our method offers a more comprehensive way to learn representations for molecular property prediction and has broad potential in drug and material discovery applications.
arXiv Detail & Related papers (2023-05-22T00:56:00Z) - A Molecular Multimodal Foundation Model Associating Molecule Graphs with
Natural Language [63.60376252491507]
We propose a molecular multimodal foundation model which is pretrained from molecular graphs and their semantically related textual data.
We believe that our model would have a broad impact on AI-empowered fields across disciplines such as biology, chemistry, materials, environment, and medicine.
arXiv Detail & Related papers (2022-09-12T00:56:57Z) - Chemical-Reaction-Aware Molecule Representation Learning [88.79052749877334]
We propose using chemical reactions to assist learning molecule representation.
Our approach is proven effective to 1) keep the embedding space well-organized and 2) improve the generalization ability of molecule embeddings.
Experimental results demonstrate that our method achieves state-of-the-art performance in a variety of downstream tasks.
arXiv Detail & Related papers (2021-09-21T00:08:43Z) - Do Large Scale Molecular Language Representations Capture Important
Structural Information? [31.76876206167457]
We present molecular embeddings obtained by training an efficient transformer encoder model, referred to as MoLFormer.
Experiments show that the learned molecular representation performs competitively, when compared to graph-based and fingerprint-based supervised learning baselines.
arXiv Detail & Related papers (2021-06-17T14:33:55Z) - MolCLR: Molecular Contrastive Learning of Representations via Graph
Neural Networks [11.994553575596228]
MolCLR is a self-supervised learning framework for large unlabeled molecule datasets.
We propose three novel molecule graph augmentations: atom masking, bond deletion, and subgraph removal.
Our method achieves state-of-the-art performance on many challenging datasets.
arXiv Detail & Related papers (2021-02-19T17:35:18Z) - Reinforced Molecular Optimization with Neighborhood-Controlled Grammars [63.84003497770347]
We propose MNCE-RL, a graph convolutional policy network for molecular optimization.
We extend the original neighborhood-controlled embedding grammars to make them applicable to molecular graph generation.
We show that our approach achieves state-of-the-art performance in a diverse range of molecular optimization tasks.
arXiv Detail & Related papers (2020-11-14T05:42:15Z) - Self-Supervised Graph Transformer on Large-Scale Molecular Data [73.3448373618865]
We propose a novel framework, GROVER, for molecular representation learning.
GROVER can learn rich structural and semantic information of molecules from enormous unlabelled molecular data.
We pre-train GROVER with 100 million parameters on 10 million unlabelled molecules -- the biggest GNN and the largest training dataset in molecular representation learning.
arXiv Detail & Related papers (2020-06-18T08:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.