The Impact of Generative AI on Collaborative Open-Source Software Development: Evidence from GitHub Copilot
- URL: http://arxiv.org/abs/2410.02091v1
- Date: Wed, 2 Oct 2024 23:26:10 GMT
- Title: The Impact of Generative AI on Collaborative Open-Source Software Development: Evidence from GitHub Copilot
- Authors: Fangchen Song, Ashish Agarwal, Wen Wen,
- Abstract summary: We investigate the role of GitHub Copilot, a generative AI programmer pair, on software development in open-source community.
We find that Copilot significantly enhances project-level productivity by 6.5%.
We conclude that AI pair programmers bring benefits to developers to automate and augment their code, but human developers' knowledge of software projects can enhance the benefits.
- Score: 4.8256226973915455
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Generative artificial intelligence (AI) has opened the possibility of automated content production, including coding in software development, which can significantly influence the participation and performance of software developers. To explore this impact, we investigate the role of GitHub Copilot, a generative AI pair programmer, on software development in open-source community, where multiple developers voluntarily collaborate on software projects. Using GitHub's dataset for open-source repositories and a generalized synthetic control method, we find that Copilot significantly enhances project-level productivity by 6.5%. Delving deeper, we dissect the key mechanisms driving this improvement. Our findings reveal a 5.5% increase in individual productivity and a 5.4% increase in participation. However, this is accompanied with a 41.6% increase in integration time, potentially due to higher coordination costs. Interestingly, we also observe the differential effects among developers. We discover that core developers achieve greater project-level productivity gains from using Copilot, benefiting more in terms of individual productivity and participation compared to peripheral developers, plausibly due to their deeper familiarity with software projects. We also find that the increase in project-level productivity is accompanied with no change in code quality. We conclude that AI pair programmers bring benefits to developers to automate and augment their code, but human developers' knowledge of software projects can enhance the benefits. In summary, our research underscores the role of AI pair programmers in impacting project-level productivity within the open-source community and suggests potential implications for the structure of open-source software projects.
Related papers
- Harnessing the Potential of Gen-AI Coding Assistants in Public Sector Software Development [0.0]
GitHub Copilot by GovTech Singapore's Engineering Productivity Programme (EPP)
Report highlights significant potential for AI Code Assistant tools to boost developer productivity and improve application quality in the public sector.
Report advises public sector developers to classify their code as "Open" to use Gen-AI Coding Assistant tools on the Cloud like GitHub Copilot.
arXiv Detail & Related papers (2024-09-25T23:59:45Z) - The Impact of Large Language Models on Open-source Innovation: Evidence from GitHub Copilot [0.0]
We study whether GenAI affects collaborative innovation, where contributions are voluntary and unguided.
We observe a significant jump in overall contributions, suggesting that GenAI effectively augments collaborative innovation in an unguided setting.
We discuss practical and policy implications to incentivize high-value innovative solutions.
arXiv Detail & Related papers (2024-09-12T19:59:54Z) - OpenHands: An Open Platform for AI Software Developers as Generalist Agents [109.8507367518992]
We introduce OpenHands, a platform for the development of AI agents that interact with the world in similar ways to a human developer.
We describe how the platform allows for the implementation of new agents, safe interaction with sandboxed environments for code execution, and incorporation of evaluation benchmarks.
arXiv Detail & Related papers (2024-07-23T17:50:43Z) - Transforming Software Development: Evaluating the Efficiency and Challenges of GitHub Copilot in Real-World Projects [0.0]
GitHub Copilot is an AI-powered coding assistant.
This study evaluates the efficiency gains, areas for improvement, and emerging challenges of using GitHub Copilot.
arXiv Detail & Related papers (2024-06-25T19:51:21Z) - Impact of the Availability of ChatGPT on Software Development: A Synthetic Difference in Differences Estimation using GitHub Data [49.1574468325115]
ChatGPT is an AI tool that enhances software production efficiency.
We estimate ChatGPT's effects on the number of git pushes, repositories, and unique developers per 100,000 people.
These results suggest that AI tools like ChatGPT can substantially boost developer productivity, though further analysis is needed to address potential downsides such as low quality code and privacy concerns.
arXiv Detail & Related papers (2024-06-16T19:11:15Z) - Transforming Software Development with Generative AI: Empirical Insights on Collaboration and Workflow [2.6124032579630114]
Generative AI (GenAI) has fundamentally changed how knowledge workers, such as software developers, solve tasks and collaborate to build software products.
Introducing innovative tools like ChatGPT and Copilot has created new opportunities to assist and augment software developers across various problems.
Our study reveals that ChatGPT signifies a paradigm shift in the workflow of software developers. The technology empowers developers by enabling them to work more efficiently, speed up the learning process, and increase motivation by reducing tedious and repetitive tasks.
arXiv Detail & Related papers (2024-02-12T12:36:29Z) - Code Ownership in Open-Source AI Software Security [18.779538756226298]
We use code ownership metrics to investigate the correlation with latent vulnerabilities across five prominent open-source AI software projects.
The findings suggest a positive relationship between high-level ownership (characterised by a limited number of minor contributors) and a decrease in vulnerabilities.
With these novel code ownership metrics, we have implemented a Python-based command-line application to aid project curators and quality assurance professionals in evaluating and benchmarking their on-site projects.
arXiv Detail & Related papers (2023-12-18T00:37:29Z) - SoTaNa: The Open-Source Software Development Assistant [81.86136560157266]
SoTaNa is an open-source software development assistant.
It generates high-quality instruction-based data for the domain of software engineering.
It employs a parameter-efficient fine-tuning approach to enhance the open-source foundation model, LLaMA.
arXiv Detail & Related papers (2023-08-25T14:56:21Z) - The GitHub Development Workflow Automation Ecosystems [47.818229204130596]
Large-scale software development has become a highly collaborative endeavour.
This chapter explores the ecosystems of development bots and GitHub Actions.
It provides an extensive survey of the state-of-the-art in this domain.
arXiv Detail & Related papers (2023-05-08T15:24:23Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
We argue that ethical considerations need to be embedded into the (agile) software development process.
We put emphasis on the possibility to implement ethical deliberations in already existing and well established agile software development processes.
arXiv Detail & Related papers (2021-07-15T11:14:03Z) - Knowledge Integration of Collaborative Product Design Using Cloud
Computing Infrastructure [65.2157099438235]
The main focus of this paper is the concept of ongoing research in providing the knowledge integration service for collaborative product design and development using cloud computing infrastructure.
Proposed knowledge integration services support users by giving real-time access to knowledge resources.
arXiv Detail & Related papers (2020-01-16T18:44:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.