ClassContrast: Bridging the Spatial and Contextual Gaps for Node Representations
- URL: http://arxiv.org/abs/2410.02158v1
- Date: Thu, 3 Oct 2024 02:44:13 GMT
- Title: ClassContrast: Bridging the Spatial and Contextual Gaps for Node Representations
- Authors: Md Joshem Uddin, Astrit Tola, Varin Sikand, Cuneyt Gurcan Akcora, Baris Coskunuzer,
- Abstract summary: Graph Neural Networks (GNNs) have revolutionized the domain of graph representation learning by utilizing neighborhood aggregation schemes.
MPGNNs face significant issues, such as oversquashing, oversmoothing, and underreaching, which hamper their effectiveness.
We propose a novel approach, ClassContrast, grounded in Energy Landscape Theory from Chemical Physics, to overcome these limitations.
- Score: 7.083346385003788
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph Neural Networks (GNNs) have revolutionized the domain of graph representation learning by utilizing neighborhood aggregation schemes in many popular architectures, such as message passing graph neural networks (MPGNNs). This scheme involves iteratively calculating a node's representation vector by aggregating and transforming the representation vectors of its adjacent nodes. Despite their effectiveness, MPGNNs face significant issues, such as oversquashing, oversmoothing, and underreaching, which hamper their effectiveness. Additionally, the reliance of MPGNNs on the homophily assumption, where edges typically connect nodes with similar labels and features, limits their performance in heterophilic contexts, where connected nodes often have significant differences. This necessitates the development of models that can operate effectively in both homophilic and heterophilic settings. In this paper, we propose a novel approach, ClassContrast, grounded in Energy Landscape Theory from Chemical Physics, to overcome these limitations. ClassContrast combines spatial and contextual information, leveraging a physics-inspired energy landscape to model node embeddings that are both discriminative and robust across homophilic and heterophilic settings. Our approach introduces contrast-based homophily matrices to enhance the understanding of class interactions and tendencies. Through extensive experiments, we demonstrate that ClassContrast outperforms traditional GNNs in node classification and link prediction tasks, proving its effectiveness and versatility in diverse real-world scenarios.
Related papers
- Clarify Confused Nodes via Separated Learning [4.282496716373314]
Graph neural networks (GNNs) have achieved remarkable advances in graph-oriented tasks.
Real-world graphs invariably contain a certain proportion of heterophilous nodes, challenging the homophily assumption of traditional GNNs.
We propose a new metric, termed Neighborhood Confusion (NC), to facilitate a more reliable separation of nodes.
arXiv Detail & Related papers (2023-06-04T07:26:20Z) - LSGNN: Towards General Graph Neural Network in Node Classification by
Local Similarity [59.41119013018377]
We propose to use the local similarity (LocalSim) to learn node-level weighted fusion, which can also serve as a plug-and-play module.
For better fusion, we propose a novel and efficient Initial Residual Difference Connection (IRDC) to extract more informative multi-hop information.
Our proposed method, namely Local Similarity Graph Neural Network (LSGNN), can offer comparable or superior state-of-the-art performance on both homophilic and heterophilic graphs.
arXiv Detail & Related papers (2023-05-07T09:06:11Z) - An Exploration of Conditioning Methods in Graph Neural Networks [8.532288965425805]
In computational tasks such as physics and chemistry usage of edge attributes such as relative position or distance proved to be essential.
We consider three types of conditioning; weak, strong, and pure, which respectively relate to concatenation-based conditioning, gating, and transformations that are causally dependent on the attributes.
This categorization provides a unifying viewpoint on different classes of GNNs, from separable convolutions to various forms of message passing networks.
arXiv Detail & Related papers (2023-05-03T07:14:12Z) - Hierarchical Contrastive Learning Enhanced Heterogeneous Graph Neural
Network [59.860534520941485]
Heterogeneous graph neural networks (HGNNs) as an emerging technique have shown superior capacity of dealing with heterogeneous information network (HIN)
Recently, contrastive learning, a self-supervised method, becomes one of the most exciting learning paradigms and shows great potential when there are no labels.
In this paper, we study the problem of self-supervised HGNNs and propose a novel co-contrastive learning mechanism for HGNNs, named HeCo.
arXiv Detail & Related papers (2023-04-24T16:17:21Z) - Discovering the Representation Bottleneck of Graph Neural Networks from
Multi-order Interactions [51.597480162777074]
Graph neural networks (GNNs) rely on the message passing paradigm to propagate node features and build interactions.
Recent works point out that different graph learning tasks require different ranges of interactions between nodes.
We study two common graph construction methods in scientific domains, i.e., emphK-nearest neighbor (KNN) graphs and emphfully-connected (FC) graphs.
arXiv Detail & Related papers (2022-05-15T11:38:14Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - Graph Neural Networks with Feature and Structure Aware Random Walk [7.143879014059894]
We show that in typical heterphilous graphs, the edges may be directed, and whether to treat the edges as is or simply make them undirected greatly affects the performance of the GNN models.
We develop a model that adaptively learns the directionality of the graph, and exploits the underlying long-distance correlations between nodes.
arXiv Detail & Related papers (2021-11-19T08:54:21Z) - Is Homophily a Necessity for Graph Neural Networks? [50.959340355849896]
Graph neural networks (GNNs) have shown great prowess in learning representations suitable for numerous graph-based machine learning tasks.
GNNs are widely believed to work well due to the homophily assumption ("like attracts like"), and fail to generalize to heterophilous graphs where dissimilar nodes connect.
Recent works design new architectures to overcome such heterophily-related limitations, citing poor baseline performance and new architecture improvements on a few heterophilous graph benchmark datasets as evidence for this notion.
In our experiments, we empirically find that standard graph convolutional networks (GCNs) can actually achieve better performance than
arXiv Detail & Related papers (2021-06-11T02:44:00Z) - Uniting Heterogeneity, Inductiveness, and Efficiency for Graph
Representation Learning [68.97378785686723]
graph neural networks (GNNs) have greatly advanced the performance of node representation learning on graphs.
A majority class of GNNs are only designed for homogeneous graphs, leading to inferior adaptivity to the more informative heterogeneous graphs.
We propose a novel inductive, meta path-free message passing scheme that packs up heterogeneous node features with their associated edges from both low- and high-order neighbor nodes.
arXiv Detail & Related papers (2021-04-04T23:31:39Z) - Graph Neural Networks with Heterophily [40.23690407583509]
We propose a novel framework called CPGNN that generalizes GNNs for graphs with either homophily or heterophily.
We show that replacing the compatibility matrix in our framework with the identity (which represents pure homophily) reduces to GCN.
arXiv Detail & Related papers (2020-09-28T18:29:36Z) - Beyond Homophily in Graph Neural Networks: Current Limitations and
Effective Designs [28.77753005139331]
We investigate the representation power of graph neural networks in a semi-supervised node classification task under heterophily or low homophily.
Many popular GNNs fail to generalize to this setting, and are even outperformed by models that ignore the graph structure.
We identify a set of key designs that boost learning from the graph structure under heterophily.
arXiv Detail & Related papers (2020-06-20T02:05:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.