Optimal Strong Regret and Violation in Constrained MDPs via Policy Optimization
- URL: http://arxiv.org/abs/2410.02275v1
- Date: Thu, 3 Oct 2024 07:54:04 GMT
- Title: Optimal Strong Regret and Violation in Constrained MDPs via Policy Optimization
- Authors: Francesco Emanuele Stradi, Matteo Castiglioni, Alberto Marchesi, Nicola Gatti,
- Abstract summary: We study online learning in emphconstrained MDPs (CMDPs)
Our algorithm implements a primal-dual scheme that employs a state-of-the-art policy optimization approach for adversarial MDPs.
- Score: 37.24692425018
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study online learning in \emph{constrained MDPs} (CMDPs), focusing on the goal of attaining sublinear strong regret and strong cumulative constraint violation. Differently from their standard (weak) counterparts, these metrics do not allow negative terms to compensate positive ones, raising considerable additional challenges. Efroni et al. (2020) were the first to propose an algorithm with sublinear strong regret and strong violation, by exploiting linear programming. Thus, their algorithm is highly inefficient, leaving as an open problem achieving sublinear bounds by means of policy optimization methods, which are much more efficient in practice. Very recently, Muller et al. (2024) have partially addressed this problem by proposing a policy optimization method that allows to attain $\widetilde{\mathcal{O}}(T^{0.93})$ strong regret/violation. This still leaves open the question of whether optimal bounds are achievable by using an approach of this kind. We answer such a question affirmatively, by providing an efficient policy optimization algorithm with $\widetilde{\mathcal{O}}(\sqrt{T})$ strong regret/violation. Our algorithm implements a primal-dual scheme that employs a state-of-the-art policy optimization approach for adversarial (unconstrained) MDPs as primal algorithm, and a UCB-like update for dual variables.
Related papers
- Best-of-Both-Worlds Policy Optimization for CMDPs with Bandit Feedback [34.7178680288326]
Stradi et al.(2024) proposed the first best-of-both-worlds algorithm for constrained Markov decision processes.
In this paper, we provide the first best-of-both-worlds algorithm for CMDPs with bandit feedback.
Our algorithm is based on a policy optimization approach, which is much more efficient than occupancy-measure-based methods.
arXiv Detail & Related papers (2024-10-03T07:44:40Z) - Narrowing the Gap between Adversarial and Stochastic MDPs via Policy Optimization [11.11876897168701]
We propose an algorithm that achieves a regret bound of order $tildemathcalO(mathrmpoly(H)sqrtSAT)$.
The proposed algorithm and analysis completely avoid the typical tool given by occupancy measures.
arXiv Detail & Related papers (2024-07-08T08:06:45Z) - Truly No-Regret Learning in Constrained MDPs [61.78619476991494]
We propose a model-based primal-dual algorithm to learn in an unknown CMDP.
We prove that our algorithm achieves sublinear regret without error cancellations.
arXiv Detail & Related papers (2024-02-24T09:47:46Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
A current standard approach to solving convex discrete optimization problems is the use of cutting-plane algorithms.
Despite the existence of a number of general-purpose cut-generating algorithms, large-scale discrete optimization problems continue to suffer from intractability.
We propose a method for accelerating cutting-plane algorithms via reinforcement learning.
arXiv Detail & Related papers (2023-07-17T20:11:56Z) - Last-Iterate Convergent Policy Gradient Primal-Dual Methods for
Constrained MDPs [107.28031292946774]
We study the problem of computing an optimal policy of an infinite-horizon discounted Markov decision process (constrained MDP)
We develop two single-time-scale policy-based primal-dual algorithms with non-asymptotic convergence of their policy iterates to an optimal constrained policy.
To the best of our knowledge, this work appears to be the first non-asymptotic policy last-iterate convergence result for single-time-scale algorithms in constrained MDPs.
arXiv Detail & Related papers (2023-06-20T17:27:31Z) - Low-Switching Policy Gradient with Exploration via Online Sensitivity
Sampling [23.989009116398208]
We design a low-switching sample-efficient policy optimization algorithm, LPO, with general non-linear function approximation.
We show that, our algorithm obtains an $varepsilon$-optimal policy with only $widetildeO(fractextpoly(d)varepsilon3)$ samples.
arXiv Detail & Related papers (2023-06-15T23:51:46Z) - Refined Regret for Adversarial MDPs with Linear Function Approximation [50.00022394876222]
We consider learning in an adversarial Decision Process (MDP) where the loss functions can change arbitrarily over $K$ episodes.
This paper provides two algorithms that improve the regret to $tildemathcal O(K2/3)$ in the same setting.
arXiv Detail & Related papers (2023-01-30T14:37:21Z) - Optimistic Policy Optimization is Provably Efficient in Non-stationary
MDPs [45.6318149525364]
We study episodic reinforcement learning (RL) in non-stationary linear kernel Markov decision processes (MDPs)
We propose the $underlinetextp$eriodically $underlinetextr$estarted $underlinetexto$ptimistic $underlinetextp$olicy $underlinetexto$ptimization algorithm (PROPO)
arXiv Detail & Related papers (2021-10-18T02:33:20Z) - A Policy Efficient Reduction Approach to Convex Constrained Deep
Reinforcement Learning [2.811714058940267]
We propose a new variant of the conditional gradient (CG) type algorithm, which generalizes the minimum norm point (MNP) method.
Our method reduces the memory costs by an order of magnitude, and achieves better performance, demonstrating both its effectiveness and efficiency.
arXiv Detail & Related papers (2021-08-29T20:51:32Z) - Private Stochastic Convex Optimization: Optimal Rates in Linear Time [74.47681868973598]
We study the problem of minimizing the population loss given i.i.d. samples from a distribution over convex loss functions.
A recent work of Bassily et al. has established the optimal bound on the excess population loss achievable given $n$ samples.
We describe two new techniques for deriving convex optimization algorithms both achieving the optimal bound on excess loss and using $O(minn, n2/d)$ gradient computations.
arXiv Detail & Related papers (2020-05-10T19:52:03Z) - Provably Efficient Exploration in Policy Optimization [117.09887790160406]
This paper proposes an Optimistic variant of the Proximal Policy Optimization algorithm (OPPO)
OPPO achieves $tildeO(sqrtd2 H3 T )$ regret.
To the best of our knowledge, OPPO is the first provably efficient policy optimization algorithm that explores.
arXiv Detail & Related papers (2019-12-12T08:40:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.