BiSSL: Bilevel Optimization for Self-Supervised Pre-Training and Fine-Tuning
- URL: http://arxiv.org/abs/2410.02387v2
- Date: Tue, 19 Nov 2024 15:39:41 GMT
- Title: BiSSL: Bilevel Optimization for Self-Supervised Pre-Training and Fine-Tuning
- Authors: Gustav Wagner Zakarias, Lars Kai Hansen, Zheng-Hua Tan,
- Abstract summary: BiSSL is a first-of-its-kind training framework that introduces bilevel optimization to enhance the alignment between the pretext pre-training and downstream fine-tuning stages in self-supervised learning.
We propose a training algorithm that alternates between optimizing the two objectives defined in BiSSL.
- Score: 12.749627564482282
- License:
- Abstract: In this work, we present BiSSL, a first-of-its-kind training framework that introduces bilevel optimization to enhance the alignment between the pretext pre-training and downstream fine-tuning stages in self-supervised learning. BiSSL formulates the pretext and downstream task objectives as the lower- and upper-level objectives in a bilevel optimization problem and serves as an intermediate training stage within the self-supervised learning pipeline. By more explicitly modeling the interdependence of these training stages, BiSSL facilitates enhanced information sharing between them, ultimately leading to a backbone parameter initialization that is better suited for the downstream task. We propose a training algorithm that alternates between optimizing the two objectives defined in BiSSL. Using a ResNet-18 backbone pre-trained with SimCLR on the STL10 dataset, we demonstrate that our proposed framework consistently achieves improved or competitive classification accuracies across various downstream image classification datasets compared to the conventional self-supervised learning pipeline. Qualitative analyses of the backbone features further suggest that BiSSL enhances the alignment of downstream features in the backbone prior to fine-tuning.
Related papers
- Enhancing Robustness of Vision-Language Models through Orthogonality Learning and Self-Regularization [77.62516752323207]
We introduce an orthogonal fine-tuning method for efficiently fine-tuning pretrained weights and enabling enhanced robustness and generalization.
A self-regularization strategy is further exploited to maintain the stability in terms of zero-shot generalization of VLMs, dubbed OrthSR.
For the first time, we revisit the CLIP and CoOp with our method to effectively improve the model on few-shot image classficiation scenario.
arXiv Detail & Related papers (2024-07-11T10:35:53Z) - BECLR: Batch Enhanced Contrastive Few-Shot Learning [1.450405446885067]
Unsupervised few-shot learning aspires to bridge this gap by discarding the reliance on annotations at training time.
We propose a novel Dynamic Clustered mEmory (DyCE) module to promote a highly separable latent representation space.
We then tackle the, somehow overlooked yet critical, issue of sample bias at the few-shot inference stage.
arXiv Detail & Related papers (2024-02-04T10:52:43Z) - Joint Unsupervised and Supervised Training for Automatic Speech
Recognition via Bilevel Optimization [73.98386682604122]
We present a novel bilevel optimization-based training approach to training acoustic models for automatic speech recognition (ASR) tasks that we term bi-level joint unsupervised and supervised training (BL-JUST).
BL-JUST employs a lower and upper level optimization with an unsupervised loss and a supervised loss respectively, leveraging recent advances in penalty-based bilevel optimization to solve this challenging ASR problem with affordable complexity and rigorous convergence guarantees.
arXiv Detail & Related papers (2024-01-13T05:01:47Z) - Understanding and Improving the Role of Projection Head in
Self-Supervised Learning [77.59320917894043]
Self-supervised learning (SSL) aims to produce useful feature representations without access to human-labeled data annotations.
Current contrastive learning approaches append a parametrized projection head to the end of some backbone network to optimize the InfoNCE objective.
This raises a fundamental question: Why is a learnable projection head required if we are to discard it after training?
arXiv Detail & Related papers (2022-12-22T05:42:54Z) - FUSSL: Fuzzy Uncertain Self Supervised Learning [8.31483061185317]
Self supervised learning (SSL) has become a very successful technique to harness the power of unlabeled data, with no annotation effort.
In this paper, for the first time, we recognize the fundamental limits of SSL coming from the use of a single-supervisory signal.
We propose a robust and general standard hierarchical learning/training protocol for any SSL baseline.
arXiv Detail & Related papers (2022-10-28T01:06:10Z) - Improving Self-Supervised Learning by Characterizing Idealized
Representations [155.1457170539049]
We prove necessary and sufficient conditions for any task invariant to given data augmentations.
For contrastive learning, our framework prescribes simple but significant improvements to previous methods.
For non-contrastive learning, we use our framework to derive a simple and novel objective.
arXiv Detail & Related papers (2022-09-13T18:01:03Z) - On the Importance of Hyperparameters and Data Augmentation for
Self-Supervised Learning [32.53142486214591]
Self-Supervised Learning (SSL) has become a very active area of Deep Learning research where it is heavily used as a pre-training method for classification and other tasks.
Here, we show that, indeed, the choice of hyper parameters and data augmentation strategies can have a dramatic impact on performance.
We introduce a new automated data augmentation algorithm, GroupAugment, which considers groups of augmentations and optimize the sampling across groups.
arXiv Detail & Related papers (2022-07-16T08:31:11Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) aims to determine the sentiment polarity towards an aspect.
There always exists severe domain shift between the pretraining and downstream ABSA datasets.
We introduce a unified alignment pretraining framework into the vanilla pretrain-finetune pipeline.
arXiv Detail & Related papers (2021-10-26T04:03:45Z) - CSS-LM: A Contrastive Framework for Semi-supervised Fine-tuning of
Pre-trained Language Models [59.49705076369856]
We introduce a novel framework to improve the fine-tuning phase of pre-trained language models (PLMs)
We retrieve positive and negative instances from large-scale unlabeled corpora according to their domain-level and class-level semantic relatedness to a task.
We then perform contrastive semi-supervised learning on both the retrieved unlabeled and original labeled instances to help PLMs capture crucial task-related semantic features.
arXiv Detail & Related papers (2021-02-07T09:27:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.