Online Multi-Label Classification under Noisy and Changing Label Distribution
- URL: http://arxiv.org/abs/2410.02394v1
- Date: Thu, 3 Oct 2024 11:16:43 GMT
- Title: Online Multi-Label Classification under Noisy and Changing Label Distribution
- Authors: Yizhang Zou, Xuegang Hu, Peipei Li, Jun Hu, You Wu,
- Abstract summary: We propose an online multi-label classification algorithm under Noisy and Changing Label Distribution (NCLD)
The objective is to simultaneously model the label scoring and the label ranking for high accuracy, whose robustness to NCLD benefits from three novel works.
- Score: 9.17381554071824
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-label data stream usually contains noisy labels in the real-world applications, namely occuring in both relevant and irrelevant labels. However, existing online multi-label classification methods are mostly limited in terms of label quality and fail to deal with the case of noisy labels. On the other hand, the ground-truth label distribution may vary with the time changing, which is hidden in the observed noisy label distribution and difficult to track, posing a major challenge for concept drift adaptation. Motivated by this, we propose an online multi-label classification algorithm under Noisy and Changing Label Distribution (NCLD). The convex objective is designed to simultaneously model the label scoring and the label ranking for high accuracy, whose robustness to NCLD benefits from three novel works: 1) The local feature graph is used to reconstruct the label scores jointly with the observed labels, and an unbiased ranking loss is derived and applied to learn reliable ranking information. 2) By detecting the difference between two adjacent chunks with the unbiased label cardinality, we identify the change in the ground-truth label distribution and reset the ranking or all information learned from the past to match the new distribution. 3) Efficient and accurate updating is achieved based on the updating rule derived from the closed-form optimal model solution. Finally, empirical experimental results validate the effectiveness of our method in classifying instances under NCLD.
Related papers
- Inaccurate Label Distribution Learning with Dependency Noise [52.08553913094809]
We introduce the Dependent Noise-based Inaccurate Label Distribution Learning (DN-ILDL) framework to tackle the challenges posed by noise in label distribution learning.
We show that DN-ILDL effectively addresses the ILDL problem and outperforms existing LDL methods.
arXiv Detail & Related papers (2024-05-26T07:58:07Z) - Drawing the Same Bounding Box Twice? Coping Noisy Annotations in Object
Detection with Repeated Labels [6.872072177648135]
We propose a novel localization algorithm that adapts well-established ground truth estimation methods.
Our algorithm also shows superior performance during training on the TexBiG dataset.
arXiv Detail & Related papers (2023-09-18T13:08:44Z) - Class-Distribution-Aware Pseudo Labeling for Semi-Supervised Multi-Label
Learning [97.88458953075205]
Pseudo-labeling has emerged as a popular and effective approach for utilizing unlabeled data.
This paper proposes a novel solution called Class-Aware Pseudo-Labeling (CAP) that performs pseudo-labeling in a class-aware manner.
arXiv Detail & Related papers (2023-05-04T12:52:18Z) - Bridging the Gap between Model Explanations in Partially Annotated
Multi-label Classification [85.76130799062379]
We study how false negative labels affect the model's explanation.
We propose to boost the attribution scores of the model trained with partial labels to make its explanation resemble that of the model trained with full labels.
arXiv Detail & Related papers (2023-04-04T14:00:59Z) - Learning from Noisy Labels with Decoupled Meta Label Purifier [33.87292143223425]
Training deep neural networks with noisy labels is challenging since DNN can easily memorize inaccurate labels.
In this paper, we propose a novel multi-stage label purifier named DMLP.
DMLP decouples the label correction process into label-free representation learning and a simple meta label purifier.
arXiv Detail & Related papers (2023-02-14T03:39:30Z) - Exploiting Completeness and Uncertainty of Pseudo Labels for Weakly
Supervised Video Anomaly Detection [149.23913018423022]
Weakly supervised video anomaly detection aims to identify abnormal events in videos using only video-level labels.
Two-stage self-training methods have achieved significant improvements by self-generating pseudo labels.
We propose an enhancement framework by exploiting completeness and uncertainty properties for effective self-training.
arXiv Detail & Related papers (2022-12-08T05:53:53Z) - RLSEP: Learning Label Ranks for Multi-label Classification [0.0]
Multi-label ranking maps instances to a ranked set of predicted labels from multiple possible classes.
We propose a novel dedicated loss function to optimize models by incorporating penalties for incorrectly ranked pairs.
Our method achieves the best reported performance measures on both synthetic and real world ranked datasets.
arXiv Detail & Related papers (2022-12-08T00:59:09Z) - Dist-PU: Positive-Unlabeled Learning from a Label Distribution
Perspective [89.5370481649529]
We propose a label distribution perspective for PU learning in this paper.
Motivated by this, we propose to pursue the label distribution consistency between predicted and ground-truth label distributions.
Experiments on three benchmark datasets validate the effectiveness of the proposed method.
arXiv Detail & Related papers (2022-12-06T07:38:29Z) - Label Distribution Learning via Implicit Distribution Representation [12.402054374952485]
In this paper, we introduce the implicit distribution in the label distribution learning framework to characterize the uncertainty of each label value.
Specifically, we use deep implicit representation learning to construct a label distribution matrix with Gaussian prior constraints.
Each row component of the label distribution matrix is transformed into a standard label distribution form by using the self-attention algorithm.
arXiv Detail & Related papers (2022-09-28T04:13:53Z) - Part-based Pseudo Label Refinement for Unsupervised Person
Re-identification [29.034390810078172]
Unsupervised person re-identification (re-ID) aims at learning discriminative representations for person retrieval from unlabeled data.
Recent techniques accomplish this task by using pseudo-labels, but these labels are inherently noisy and deteriorate the accuracy.
We propose a novel Part-based Pseudo Label Refinement (PPLR) framework that reduces the label noise by employing the complementary relationship between global and part features.
arXiv Detail & Related papers (2022-03-28T12:15:53Z) - Instance-Dependent Partial Label Learning [69.49681837908511]
Partial label learning is a typical weakly supervised learning problem.
Most existing approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels.
In this paper, we consider instance-dependent and assume that each example is associated with a latent label distribution constituted by the real number of each label.
arXiv Detail & Related papers (2021-10-25T12:50:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.