Fair Decentralized Learning
- URL: http://arxiv.org/abs/2410.02541v3
- Date: Fri, 24 Jan 2025 14:30:50 GMT
- Title: Fair Decentralized Learning
- Authors: Sayan Biswas, Anne-Marie Kermarrec, Rishi Sharma, Thibaud Trinca, Martijn de Vos,
- Abstract summary: We introduce textscFacade, a clustering-based machine learning algorithm for fair model training.<n>textscFacade dynamically assigns nodes to their appropriate clusters over time, and enables nodes to collaboratively train a specialized model for each cluster in a fully decentralized manner.<n>Our experimental results on three datasets demonstrate the superiority of our approach in terms of model accuracy and fairness compared to all three competitors.
- Score: 1.7010199949406575
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Decentralized learning (DL) is an emerging approach that enables nodes to collaboratively train a machine learning model without sharing raw data. In many application domains, such as healthcare, this approach faces challenges due to the high level of heterogeneity in the training data's feature space. Such feature heterogeneity lowers model utility and negatively impacts fairness, particularly for nodes with under-represented training data. In this paper, we introduce \textsc{Facade}, a clustering-based DL algorithm specifically designed for fair model training when the training data exhibits several distinct features. The challenge of \textsc{Facade} is to assign nodes to clusters, one for each feature, based on the similarity in the features of their local data, without requiring individual nodes to know apriori which cluster they belong to. \textsc{Facade} (1) dynamically assigns nodes to their appropriate clusters over time, and (2) enables nodes to collaboratively train a specialized model for each cluster in a fully decentralized manner. We theoretically prove the convergence of \textsc{Facade}, implement our algorithm, and compare it against three state-of-the-art baselines. Our experimental results on three datasets demonstrate the superiority of our approach in terms of model accuracy and fairness compared to all three competitors. Compared to the best-performing baseline, \textsc{Facade} on the CIFAR-10 dataset also reduces communication costs by 32.3\% to reach a target accuracy when cluster sizes are imbalanced.
Related papers
- Adaptive and Robust DBSCAN with Multi-agent Reinforcement Learning [53.527506374566485]
We propose a novel Adaptive and Robust DBSCAN with Multi-agent Reinforcement Learning cluster framework, namely AR-DBSCAN.<n>We show that AR-DBSCAN not only improves clustering accuracy by up to 144.1% and 175.3% in the NMI and ARI metrics, respectively, but also is capable of robustly finding dominant parameters.
arXiv Detail & Related papers (2025-05-07T11:37:23Z) - Interaction-Aware Gaussian Weighting for Clustered Federated Learning [58.92159838586751]
Federated Learning (FL) emerged as a decentralized paradigm to train models while preserving privacy.
We propose a novel clustered FL method, FedGWC (Federated Gaussian Weighting Clustering), which groups clients based on their data distribution.
Our experiments on benchmark datasets show that FedGWC outperforms existing FL algorithms in cluster quality and classification accuracy.
arXiv Detail & Related papers (2025-02-05T16:33:36Z) - Federated Clustering: An Unsupervised Cluster-Wise Training for Decentralized Data Distributions [1.6385815610837167]
Federated Cluster-Wise Refinement (FedCRef) involves clients that collaboratively train models on clusters with similar data distributions.
In these groups, clients collaboratively train a shared model representing each data distribution, while continuously refining their local clusters to enhance data association accuracy.
This iterative process allows our system to identify all potential data distributions across the network and develop robust representation models for each.
arXiv Detail & Related papers (2024-08-20T09:05:44Z) - FedClust: Tackling Data Heterogeneity in Federated Learning through Weight-Driven Client Clustering [26.478852701376294]
Federated learning (FL) is an emerging distributed machine learning paradigm.
One of the major challenges in FL is the presence of uneven data distributions across client devices.
We propose em FedClust, a novel approach for CFL that leverages the correlation between local model weights and the data distribution of clients.
arXiv Detail & Related papers (2024-07-09T02:47:16Z) - Federated Two Stage Decoupling With Adaptive Personalization Layers [5.69361786082969]
Federated learning has gained significant attention due to its ability to enable distributed learning while maintaining privacy constraints.
It inherently experiences significant learning degradation and slow convergence speed.
It is natural to employ the concept of clustering homogeneous clients into the same group, allowing only the model weights within each group to be aggregated.
arXiv Detail & Related papers (2023-08-30T07:46:32Z) - Rethinking Data Heterogeneity in Federated Learning: Introducing a New
Notion and Standard Benchmarks [65.34113135080105]
We show that not only the issue of data heterogeneity in current setups is not necessarily a problem but also in fact it can be beneficial for the FL participants.
Our observations are intuitive.
Our code is available at https://github.com/MMorafah/FL-SC-NIID.
arXiv Detail & Related papers (2022-09-30T17:15:19Z) - Communication-Efficient Federated Learning With Data and Client
Heterogeneity [22.432529149142976]
Federated Learning (FL) enables large-scale distributed training of machine learning models.
executing FL at scale comes with inherent practical challenges.
We present the first variant of the classic federated averaging (FedAvg) algorithm.
arXiv Detail & Related papers (2022-06-20T22:39:39Z) - Learning Statistical Representation with Joint Deep Embedded Clustering [2.1267423178232407]
StatDEC is an unsupervised framework for joint statistical representation learning and clustering.
Our experiments show that using these representations, one can considerably improve results on imbalanced image clustering across a variety of image datasets.
arXiv Detail & Related papers (2021-09-11T09:26:52Z) - You Never Cluster Alone [150.94921340034688]
We extend the mainstream contrastive learning paradigm to a cluster-level scheme, where all the data subjected to the same cluster contribute to a unified representation.
We define a set of categorical variables as clustering assignment confidence, which links the instance-level learning track with the cluster-level one.
By reparametrizing the assignment variables, TCC is trained end-to-end, requiring no alternating steps.
arXiv Detail & Related papers (2021-06-03T14:59:59Z) - Cross-Gradient Aggregation for Decentralized Learning from Non-IID data [34.23789472226752]
Decentralized learning enables a group of collaborative agents to learn models using a distributed dataset without the need for a central parameter server.
We propose Cross-Gradient Aggregation (CGA), a novel decentralized learning algorithm.
We show superior learning performance of CGA over existing state-of-the-art decentralized learning algorithms.
arXiv Detail & Related papers (2021-03-02T21:58:12Z) - Quasi-Global Momentum: Accelerating Decentralized Deep Learning on
Heterogeneous Data [77.88594632644347]
Decentralized training of deep learning models is a key element for enabling data privacy and on-device learning over networks.
In realistic learning scenarios, the presence of heterogeneity across different clients' local datasets poses an optimization challenge.
We propose a novel momentum-based method to mitigate this decentralized training difficulty.
arXiv Detail & Related papers (2021-02-09T11:27:14Z) - Learning while Respecting Privacy and Robustness to Distributional
Uncertainties and Adversarial Data [66.78671826743884]
The distributionally robust optimization framework is considered for training a parametric model.
The objective is to endow the trained model with robustness against adversarially manipulated input data.
Proposed algorithms offer robustness with little overhead.
arXiv Detail & Related papers (2020-07-07T18:25:25Z) - Generalized Zero-Shot Learning Via Over-Complete Distribution [79.5140590952889]
We propose to generate an Over-Complete Distribution (OCD) using Conditional Variational Autoencoder (CVAE) of both seen and unseen classes.
The effectiveness of the framework is evaluated using both Zero-Shot Learning and Generalized Zero-Shot Learning protocols.
arXiv Detail & Related papers (2020-04-01T19:05:28Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.