Personalized Quantum Federated Learning for Privacy Image Classification
- URL: http://arxiv.org/abs/2410.02547v1
- Date: Thu, 3 Oct 2024 14:53:04 GMT
- Title: Personalized Quantum Federated Learning for Privacy Image Classification
- Authors: Jinjing Shi, Tian Chen, Shichao Zhang, Xuelong Li,
- Abstract summary: A personalized quantum federated learning algorithm is proposed to enhance the personality of the client model in the case of an imbalanced distribution of images.
The experimental results indicate that the personalized quantum federated learning algorithm can obtain global and local models with excellent performance.
- Score: 52.04404538764307
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum federated learning has brought about the improvement of privacy image classification, while the lack of personality of the client model may contribute to the suboptimal of quantum federated learning. A personalized quantum federated learning algorithm for privacy image classification is proposed to enhance the personality of the client model in the case of an imbalanced distribution of images. First, a personalized quantum federated learning model is constructed, in which a personalized layer is set for the client model to maintain the personalized parameters. Second, a personalized quantum federated learning algorithm is introduced to secure the information exchanged between the client and server.Third, the personalized federated learning is applied to image classification on the FashionMNIST dataset, and the experimental results indicate that the personalized quantum federated learning algorithm can obtain global and local models with excellent performance, even in situations where local training samples are imbalanced. The server's accuracy is 100% with 8 clients and a distribution parameter of 100, outperforming the non-personalized model by 7%. The average client accuracy is 2.9% higher than that of the non-personalized model with 2 clients and a distribution parameter of 1. Compared to previous quantum federated learning algorithms, the proposed personalized quantum federated learning algorithm eliminates the need for additional local training while safeguarding both model and data privacy.It may facilitate broader adoption and application of quantum technologies, and pave the way for more secure, scalable, and efficient quantum distribute machine learning solutions.
Related papers
- FedCAda: Adaptive Client-Side Optimization for Accelerated and Stable Federated Learning [57.38427653043984]
Federated learning (FL) has emerged as a prominent approach for collaborative training of machine learning models across distributed clients.
We introduce FedCAda, an innovative federated client adaptive algorithm designed to tackle this challenge.
We demonstrate that FedCAda outperforms the state-of-the-art methods in terms of adaptability, convergence, stability, and overall performance.
arXiv Detail & Related papers (2024-05-20T06:12:33Z) - Learn What You Need in Personalized Federated Learning [53.83081622573734]
$textitLearn2pFed$ is a novel algorithm-unrolling-based personalized federated learning framework.
We show that $textitLearn2pFed$ significantly outperforms previous personalized federated learning methods.
arXiv Detail & Related papers (2024-01-16T12:45:15Z) - PeFLL: Personalized Federated Learning by Learning to Learn [16.161876130822396]
We present PeFLL, a new personalized federated learning algorithm that improves over the state-of-the-art in three aspects.
At the core of PeFLL lies a learning-to-learn approach that jointly trains an embedding network and a hypernetwork.
arXiv Detail & Related papers (2023-06-08T19:12:42Z) - Personalized Federated Learning under Mixture of Distributions [98.25444470990107]
We propose a novel approach to Personalized Federated Learning (PFL), which utilizes Gaussian mixture models (GMM) to fit the input data distributions across diverse clients.
FedGMM possesses an additional advantage of adapting to new clients with minimal overhead, and it also enables uncertainty quantification.
Empirical evaluations on synthetic and benchmark datasets demonstrate the superior performance of our method in both PFL classification and novel sample detection.
arXiv Detail & Related papers (2023-05-01T20:04:46Z) - FedClassAvg: Local Representation Learning for Personalized Federated
Learning on Heterogeneous Neural Networks [21.613436984547917]
We propose a novel personalized federated learning method called federated classifier averaging (FedClassAvg)
FedClassAvg aggregates weights as an agreement on decision boundaries on feature spaces.
We demonstrate it outperforms the current state-of-the-art algorithms on heterogeneous personalized federated learning tasks.
arXiv Detail & Related papers (2022-10-25T08:32:08Z) - Straggler-Resilient Personalized Federated Learning [55.54344312542944]
Federated learning allows training models from samples distributed across a large network of clients while respecting privacy and communication restrictions.
We develop a novel algorithmic procedure with theoretical speedup guarantees that simultaneously handles two of these hurdles.
Our method relies on ideas from representation learning theory to find a global common representation using all clients' data and learn a user-specific set of parameters leading to a personalized solution for each client.
arXiv Detail & Related papers (2022-06-05T01:14:46Z) - Self-Aware Personalized Federated Learning [32.97492968378679]
We develop a self-aware personalized federated learning (FL) method inspired by Bayesian hierarchical models.
Our method uses uncertainty-driven local training steps and aggregation rule instead of conventional local fine-tuning and sample size-based aggregation.
With experimental studies on synthetic data, Amazon Alexa audio data, and public datasets such as MNIST, FEMNIST, CIFAR10, and Sent140, we show that our proposed method can achieve significantly improved personalization performance.
arXiv Detail & Related papers (2022-04-17T19:02:25Z) - QuPeD: Quantized Personalization via Distillation with Applications to
Federated Learning [8.420943739336067]
federated learning (FL) aims to train a single global model while collaboratively using multiple clients and a server.
We introduce a textitquantized and textitpersonalized FL algorithm QuPeD that facilitates collective (personalized model compression) training.
Numerically, we validate that QuPeD outperforms competing personalized FL methods, FedAvg, and local training of clients in various heterogeneous settings.
arXiv Detail & Related papers (2021-07-29T10:55:45Z) - QuPeL: Quantized Personalization with Applications to Federated Learning [8.420943739336067]
In this work, we introduce a textitquantized and textitpersonalized FL algorithm QuPeL that facilitates collective training with heterogeneous clients.
For personalization, we allow clients to learn textitcompressed personalized models with different quantization parameters depending on their resources.
Numerically, we show that optimizing over the quantization levels increases the performance and we validate that QuPeL outperforms both FedAvg and local training of clients in a heterogeneous setting.
arXiv Detail & Related papers (2021-02-23T16:43:51Z) - Toward Understanding the Influence of Individual Clients in Federated
Learning [52.07734799278535]
Federated learning allows clients to jointly train a global model without sending their private data to a central server.
We defined a new notion called em-Influence, quantify this influence over parameters, and proposed an effective efficient model to estimate this metric.
arXiv Detail & Related papers (2020-12-20T14:34:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.