Estimating Body Volume and Height Using 3D Data
- URL: http://arxiv.org/abs/2410.02800v1
- Date: Wed, 18 Sep 2024 16:20:46 GMT
- Title: Estimating Body Volume and Height Using 3D Data
- Authors: Vivek Ganesh Sonar, Muhammad Tanveer Jan, Mike Wells, Abhijit Pandya, Gabriela Engstrom, Richard Shih, Borko Furht,
- Abstract summary: This paper presents a non-invasive method for estimating body weight using 3D imaging technology.
A RealSense D415 camera is employed to capture high-resolution depth maps of the patient.
The height is derived from the 3D model by identifying the distance between key points on the body.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate body weight estimation is critical in emergency medicine for proper dosing of weight-based medications, yet direct measurement is often impractical in urgent situations. This paper presents a non-invasive method for estimating body weight by calculating total body volume and height using 3D imaging technology. A RealSense D415 camera is employed to capture high-resolution depth maps of the patient, from which 3D models are generated. The Convex Hull Algorithm is then applied to calculate the total body volume, with enhanced accuracy achieved by segmenting the point cloud data into multiple sections and summing their individual volumes. The height is derived from the 3D model by identifying the distance between key points on the body. This combined approach provides an accurate estimate of body weight, improving the reliability of medical interventions where precise weight data is unavailable. The proposed method demonstrates significant potential to enhance patient safety and treatment outcomes in emergency settings.
Related papers
- Calib3D: Calibrating Model Preferences for Reliable 3D Scene Understanding [55.32861154245772]
Calib3D is a pioneering effort to benchmark and scrutinize the reliability of 3D scene understanding models.
We evaluate 28 state-of-the-art models across 10 diverse 3D datasets.
We introduce DeptS, a novel depth-aware scaling approach aimed at enhancing 3D model calibration.
arXiv Detail & Related papers (2024-03-25T17:59:59Z) - Binarized 3D Whole-body Human Mesh Recovery [104.13364878565737]
We propose a Binarized Dual Residual Network (BiDRN) to estimate the 3D human body, face, and hands parameters efficiently.
BiDRN achieves comparable performance with full-precision method Hand4Whole while using just 22.1% parameters and 14.8% operations.
arXiv Detail & Related papers (2023-11-24T07:51:50Z) - Advancing Smart Malnutrition Monitoring: A Multi-Modal Learning Approach
for Vital Health Parameter Estimation [0.0]
This study presents a groundbreaking, scalable, and robust smart malnutrition-monitoring system.
It uses a single full-body image of an individual to estimate height, weight, and other crucial health parameters.
Our model achieves a low Mean Absolute Error (MAE) of $pm$ 4.7 cm and $pm$ 5.3 kg in estimating height and weight.
arXiv Detail & Related papers (2023-07-31T15:08:02Z) - Probabilistic 3D segmentation for aleatoric uncertainty quantification
in full 3D medical data [7.615431940103322]
We develop a 3D probabilistic segmentation framework augmented with Normalizing Flows.
We are the first to present a 3D Squared Generalized Energy Distance (GED) of 0.401 and a high 0.468 Hungarian-matched 3D IoU.
arXiv Detail & Related papers (2023-05-01T17:19:20Z) - Validated respiratory drug deposition predictions from 2D and 3D medical
images with statistical shape models and convolutional neural networks [47.187609203210705]
We aim to develop and validate an automated computational framework for patient-specific deposition modelling.
An image processing approach is proposed that could produce 3D patient respiratory geometries from 2D chest X-rays and 3D CT images.
arXiv Detail & Related papers (2023-03-02T07:47:07Z) - A Neural Anthropometer Learning from Body Dimensions Computed on Human
3D Meshes [0.0]
We present a method to calculate right and left arm length, shoulder width, and inseam (crotch height) from 3D meshes with focus on potential medical, virtual try-on and distance tailoring applications.
On the other hand, we use four additional body dimensions calculated using recently published methods to assemble a set of eight body dimensions which we use as a supervision signal to our Neural Anthropometer: a convolutional neural network capable of estimating these dimensions.
arXiv Detail & Related papers (2021-10-06T12:56:05Z) - Comprehensive Validation of Automated Whole Body Skeletal Muscle,
Adipose Tissue, and Bone Segmentation from 3D CT images for Body Composition
Analysis: Towards Extended Body Composition [0.6176955945418618]
Powerful tools of artificial intelligence such as deep learning are making it feasible now to segment the entire 3D image and generate accurate measurements of all internal anatomy.
These will enable the overcoming of the severe bottleneck that existed previously, namely, the need for manual segmentation.
These measurements were hitherto unavailable thereby limiting the field to a very small and limited subset.
arXiv Detail & Related papers (2021-06-01T17:30:45Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z) - Deep Volumetric Universal Lesion Detection using Light-Weight Pseudo 3D
Convolution and Surface Point Regression [23.916776570010285]
Computer-aided lesion/significant-findings detection techniques are at the core of medical imaging.
We propose a novel deep anchor-free one-stage VULD framework that incorporates (1) P3DC operators to recycle the architectural configurations and pre-trained weights from the off-the-shelf 2D networks.
New SPR method to effectively regress the 3D lesion spatial extents by pinpointing their representative key points on lesion surfaces.
arXiv Detail & Related papers (2020-08-30T19:42:06Z) - Anatomy-aware 3D Human Pose Estimation with Bone-based Pose
Decomposition [92.99291528676021]
Instead of directly regressing the 3D joint locations, we decompose the task into bone direction prediction and bone length prediction.
Our motivation is the fact that the bone lengths of a human skeleton remain consistent across time.
Our full model outperforms the previous best results on Human3.6M and MPI-INF-3DHP datasets.
arXiv Detail & Related papers (2020-02-24T15:49:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.