LLMs May Not Be Human-Level Players, But They Can Be Testers: Measuring Game Difficulty with LLM Agents
- URL: http://arxiv.org/abs/2410.02829v1
- Date: Tue, 1 Oct 2024 18:40:43 GMT
- Title: LLMs May Not Be Human-Level Players, But They Can Be Testers: Measuring Game Difficulty with LLM Agents
- Authors: Chang Xiao, Brenda Z. Yang,
- Abstract summary: We propose a general game-testing framework using LLM agents and test it on two widely played strategy games: Wordle and Slay the Spire.
Our results reveal an interesting finding: although LLMs may not perform as well as the average human player, their performance, when guided by simple, generic prompting techniques, shows a statistically significant and strong correlation with difficulty indicated by human players.
This suggests that LLMs could serve as effective agents for measuring game difficulty during the development process.
- Score: 10.632179121247466
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent advances in Large Language Models (LLMs) have demonstrated their potential as autonomous agents across various tasks. One emerging application is the use of LLMs in playing games. In this work, we explore a practical problem for the gaming industry: Can LLMs be used to measure game difficulty? We propose a general game-testing framework using LLM agents and test it on two widely played strategy games: Wordle and Slay the Spire. Our results reveal an interesting finding: although LLMs may not perform as well as the average human player, their performance, when guided by simple, generic prompting techniques, shows a statistically significant and strong correlation with difficulty indicated by human players. This suggests that LLMs could serve as effective agents for measuring game difficulty during the development process. Based on our experiments, we also outline general principles and guidelines for incorporating LLMs into the game testing process.
Related papers
- Are You Human? An Adversarial Benchmark to Expose LLMs [2.6528263069045126]
Large Language Models (LLMs) have demonstrated an alarming ability to impersonate humans in conversation.
We evaluate text-based prompts designed as challenges to expose LLM imposters in real-time.
arXiv Detail & Related papers (2024-10-12T15:33:50Z) - CUTE: Measuring LLMs' Understanding of Their Tokens [54.70665106141121]
Large Language Models (LLMs) show remarkable performance on a wide variety of tasks.
This raises the question: To what extent can LLMs learn orthographic information?
We propose a new benchmark, which features a collection of tasks designed to test the orthographic knowledge of LLMs.
arXiv Detail & Related papers (2024-09-23T18:27:03Z) - AI Meets the Classroom: When Does ChatGPT Harm Learning? [0.0]
We study how generative AI and specifically large language models (LLMs) impact learning in coding classes.
We show across three studies that LLM usage can have positive and negative effects on learning outcomes.
arXiv Detail & Related papers (2024-08-29T17:07:46Z) - Evaluating and Enhancing LLMs Agent based on Theory of Mind in Guandan: A Multi-Player Cooperative Game under Imperfect Information [36.11862095329315]
Large language models (LLMs) have shown success in handling simple games with imperfect information.
This study investigates the applicability of knowledge acquired by open-source and API-based LLMs to sophisticated text-based games.
arXiv Detail & Related papers (2024-08-05T15:36:46Z) - GTBench: Uncovering the Strategic Reasoning Limitations of LLMs via Game-Theoretic Evaluations [87.99872683336395]
Large Language Models (LLMs) are integrated into critical real-world applications.
This paper evaluates LLMs' reasoning abilities in competitive environments.
We first propose GTBench, a language-driven environment composing 10 widely recognized tasks.
arXiv Detail & Related papers (2024-02-19T18:23:36Z) - Large Language Models: A Survey [69.72787936480394]
Large Language Models (LLMs) have drawn a lot of attention due to their strong performance on a wide range of natural language tasks.
LLMs' ability of general-purpose language understanding and generation is acquired by training billions of model's parameters on massive amounts of text data.
arXiv Detail & Related papers (2024-02-09T05:37:09Z) - LLM Augmented Hierarchical Agents [4.574041097539858]
Solving long-horizon, temporally-extended tasks using Reinforcement Learning (RL) is challenging, compounded by the common practice of learning without prior knowledge (or tabula rasa learning)
In this paper we exploit the planning capabilities of LLMs while using RL to provide learning from the environment, resulting in a hierarchical agent that uses LLMs to solve long-horizon tasks.
This approach is evaluated in simulation environments such as MiniGrid, SkillHack, and Crafter, and on a real robot arm in block manipulation tasks.
arXiv Detail & Related papers (2023-11-09T18:54:28Z) - Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves [57.974103113675795]
We present a method named Rephrase and Respond' (RaR) which allows Large Language Models to rephrase and expand questions posed by humans.
RaR serves as a simple yet effective prompting method for improving performance.
We show that RaR is complementary to the popular Chain-of-Thought (CoT) methods, both theoretically and empirically.
arXiv Detail & Related papers (2023-11-07T18:43:34Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay [55.12945794835791]
Using Avalon as a testbed, we employ system prompts to guide LLM agents in gameplay.
We propose a novel framework, tailored for Avalon, features a multi-agent system facilitating efficient communication and interaction.
Results affirm the framework's effectiveness in creating adaptive agents and suggest LLM-based agents' potential in navigating dynamic social interactions.
arXiv Detail & Related papers (2023-10-23T14:35:26Z) - SPRING: Studying the Paper and Reasoning to Play Games [102.5587155284795]
We propose a novel approach, SPRING, to read the game's original academic paper and use the knowledge learned to reason and play the game through a large language model (LLM)
In experiments, we study the quality of in-context "reasoning" induced by different forms of prompts under the setting of the Crafter open-world environment.
Our experiments suggest that LLMs, when prompted with consistent chain-of-thought, have great potential in completing sophisticated high-level trajectories.
arXiv Detail & Related papers (2023-05-24T18:14:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.