Redefining Temporal Modeling in Video Diffusion: The Vectorized Timestep Approach
- URL: http://arxiv.org/abs/2410.03160v1
- Date: Fri, 4 Oct 2024 05:47:39 GMT
- Title: Redefining Temporal Modeling in Video Diffusion: The Vectorized Timestep Approach
- Authors: Yaofang Liu, Yumeng Ren, Xiaodong Cun, Aitor Artola, Yang Liu, Tieyong Zeng, Raymond H. Chan, Jean-michel Morel,
- Abstract summary: We propose a frame-aware video diffusion model(FVDM)
Our approach allows each frame to follow an independent noise schedule, enhancing the model's capacity to capture fine-grained temporal dependencies.
Our empirical evaluations show that FVDM outperforms state-of-the-art methods in video generation quality, while also excelling in extended tasks.
- Score: 29.753974393652356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have revolutionized image generation, and their extension to video generation has shown promise. However, current video diffusion models~(VDMs) rely on a scalar timestep variable applied at the clip level, which limits their ability to model complex temporal dependencies needed for various tasks like image-to-video generation. To address this limitation, we propose a frame-aware video diffusion model~(FVDM), which introduces a novel vectorized timestep variable~(VTV). Unlike conventional VDMs, our approach allows each frame to follow an independent noise schedule, enhancing the model's capacity to capture fine-grained temporal dependencies. FVDM's flexibility is demonstrated across multiple tasks, including standard video generation, image-to-video generation, video interpolation, and long video synthesis. Through a diverse set of VTV configurations, we achieve superior quality in generated videos, overcoming challenges such as catastrophic forgetting during fine-tuning and limited generalizability in zero-shot methods.Our empirical evaluations show that FVDM outperforms state-of-the-art methods in video generation quality, while also excelling in extended tasks. By addressing fundamental shortcomings in existing VDMs, FVDM sets a new paradigm in video synthesis, offering a robust framework with significant implications for generative modeling and multimedia applications.
Related papers
- Multimodal Instruction Tuning with Hybrid State Space Models [25.921044010033267]
Long context is crucial for enhancing the recognition and understanding capabilities of multimodal large language models.
We propose a novel approach using a hybrid transformer-MAMBA model to efficiently handle long contexts in multimodal applications.
Our model enhances inference efficiency for high-resolution images and high-frame-rate videos by about 4 times compared to current models.
arXiv Detail & Related papers (2024-11-13T18:19:51Z) - ViD-GPT: Introducing GPT-style Autoregressive Generation in Video Diffusion Models [66.84478240757038]
A majority of video diffusion models (VDMs) generate long videos in an autoregressive manner, i.e., generating subsequent clips conditioned on last frames of previous clip.
We introduce causal (i.e., unidirectional) generation into VDMs, and use past frames as prompt to generate future frames.
Our ViD-GPT achieves state-of-the-art performance both quantitatively and qualitatively on long video generation.
arXiv Detail & Related papers (2024-06-16T15:37:22Z) - Vivid-ZOO: Multi-View Video Generation with Diffusion Model [76.96449336578286]
New challenges lie in the lack of massive captioned multi-view videos and the complexity of modeling such multi-dimensional distribution.
We propose a novel diffusion-based pipeline that generates high-quality multi-view videos centered around a dynamic 3D object from text.
arXiv Detail & Related papers (2024-06-12T21:44:04Z) - Video Interpolation with Diffusion Models [54.06746595879689]
We present VIDIM, a generative model for video, which creates short videos given a start and end frame.
VIDIM uses cascaded diffusion models to first generate the target video at low resolution, and then generate the high-resolution video conditioned on the low-resolution generated video.
arXiv Detail & Related papers (2024-04-01T15:59:32Z) - Upscale-A-Video: Temporal-Consistent Diffusion Model for Real-World
Video Super-Resolution [65.91317390645163]
Upscale-A-Video is a text-guided latent diffusion framework for video upscaling.
It ensures temporal coherence through two key mechanisms: locally, it integrates temporal layers into U-Net and VAE-Decoder, maintaining consistency within short sequences.
It also offers greater flexibility by allowing text prompts to guide texture creation and adjustable noise levels to balance restoration and generation.
arXiv Detail & Related papers (2023-12-11T18:54:52Z) - GD-VDM: Generated Depth for better Diffusion-based Video Generation [18.039417502897486]
This paper proposes GD-VDM, a novel diffusion model for video generation, demonstrating promising results.
We evaluated GD-VDM on the Cityscapes dataset and found that it generates more diverse and complex scenes compared to natural baselines.
arXiv Detail & Related papers (2023-06-19T21:32:10Z) - Video Probabilistic Diffusion Models in Projected Latent Space [75.4253202574722]
We propose a novel generative model for videos, coined projected latent video diffusion models (PVDM)
PVDM learns a video distribution in a low-dimensional latent space and thus can be efficiently trained with high-resolution videos under limited resources.
arXiv Detail & Related papers (2023-02-15T14:22:34Z) - VIDM: Video Implicit Diffusion Models [75.90225524502759]
Diffusion models have emerged as a powerful generative method for synthesizing high-quality and diverse set of images.
We propose a video generation method based on diffusion models, where the effects of motion are modeled in an implicit condition.
We improve the quality of the generated videos by proposing multiple strategies such as sampling space truncation, robustness penalty, and positional group normalization.
arXiv Detail & Related papers (2022-12-01T02:58:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.