Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
- URL: http://arxiv.org/abs/2410.03496v1
- Date: Fri, 4 Oct 2024 15:10:22 GMT
- Title: Fourier PINNs: From Strong Boundary Conditions to Adaptive Fourier Bases
- Authors: Madison Cooley, Varun Shankar, Robert M. Kirby, Shandian Zhe,
- Abstract summary: We study a strong Boundary Condition (BC) version of PINNs for Dirichlet BCs.
We find that strong BC PINNs can better learn the amplitudes of high-frequency components of the target solutions.
We propose Fourier PINNs -- a simple, general, yet powerful method that augments PINNs with pre-specified, dense Fourier bases.
- Score: 22.689531776611084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Interest is rising in Physics-Informed Neural Networks (PINNs) as a mesh-free alternative to traditional numerical solvers for partial differential equations (PDEs). However, PINNs often struggle to learn high-frequency and multi-scale target solutions. To tackle this problem, we first study a strong Boundary Condition (BC) version of PINNs for Dirichlet BCs and observe a consistent decline in relative error compared to the standard PINNs. We then perform a theoretical analysis based on the Fourier transform and convolution theorem. We find that strong BC PINNs can better learn the amplitudes of high-frequency components of the target solutions. However, constructing the architecture for strong BC PINNs is difficult for many BCs and domain geometries. Enlightened by our theoretical analysis, we propose Fourier PINNs -- a simple, general, yet powerful method that augments PINNs with pre-specified, dense Fourier bases. Our proposed architecture likewise learns high-frequency components better but places no restrictions on the particular BCs or problem domains. We develop an adaptive learning and basis selection algorithm via alternating neural net basis optimization, Fourier and neural net basis coefficient estimation, and coefficient truncation. This scheme can flexibly identify the significant frequencies while weakening the nominal frequencies to better capture the target solution's power spectrum. We show the advantage of our approach through a set of systematic experiments.
Related papers
- RoPINN: Region Optimized Physics-Informed Neural Networks [66.38369833561039]
Physics-informed neural networks (PINNs) have been widely applied to solve partial differential equations (PDEs)
This paper proposes and theoretically studies a new training paradigm as region optimization.
A practical training algorithm, Region Optimized PINN (RoPINN), is seamlessly derived from this new paradigm.
arXiv Detail & Related papers (2024-05-23T09:45:57Z) - PINNsFormer: A Transformer-Based Framework For Physics-Informed Neural Networks [22.39904196850583]
Physics-Informed Neural Networks (PINNs) have emerged as a promising deep learning framework for approximating numerical solutions to partial differential equations (PDEs)
We introduce a novel Transformer-based framework, termed PINNsFormer, designed to address this limitation.
PINNsFormer achieves superior generalization ability and accuracy across various scenarios, including PINNs failure modes and high-dimensional PDEs.
arXiv Detail & Related papers (2023-07-21T18:06:27Z) - Tunable Complexity Benchmarks for Evaluating Physics-Informed Neural
Networks on Coupled Ordinary Differential Equations [64.78260098263489]
In this work, we assess the ability of physics-informed neural networks (PINNs) to solve increasingly-complex coupled ordinary differential equations (ODEs)
We show that PINNs eventually fail to produce correct solutions to these benchmarks as their complexity increases.
We identify several reasons why this may be the case, including insufficient network capacity, poor conditioning of the ODEs, and high local curvature, as measured by the Laplacian of the PINN loss.
arXiv Detail & Related papers (2022-10-14T15:01:32Z) - Power and limitations of single-qubit native quantum neural networks [5.526775342940154]
Quantum neural networks (QNNs) have emerged as a leading strategy to establish applications in machine learning, chemistry, and optimization.
We formulate a theoretical framework for the expressive ability of data re-uploading quantum neural networks.
arXiv Detail & Related papers (2022-05-16T17:58:27Z) - Improved Training of Physics-Informed Neural Networks with Model
Ensembles [81.38804205212425]
We propose to expand the solution interval gradually to make the PINN converge to the correct solution.
All ensemble members converge to the same solution in the vicinity of observed data.
We show experimentally that the proposed method can improve the accuracy of the found solution.
arXiv Detail & Related papers (2022-04-11T14:05:34Z) - The Spectral Bias of Polynomial Neural Networks [63.27903166253743]
Polynomial neural networks (PNNs) have been shown to be particularly effective at image generation and face recognition, where high-frequency information is critical.
Previous studies have revealed that neural networks demonstrate a $textitspectral bias$ towards low-frequency functions, which yields faster learning of low-frequency components during training.
Inspired by such studies, we conduct a spectral analysis of the Tangent Kernel (NTK) of PNNs.
We find that the $Pi$-Net family, i.e., a recently proposed parametrization of PNNs, speeds up the
arXiv Detail & Related papers (2022-02-27T23:12:43Z) - Functional Regularization for Reinforcement Learning via Learned Fourier
Features [98.90474131452588]
We propose a simple architecture for deep reinforcement learning by embedding inputs into a learned Fourier basis.
We show that it improves the sample efficiency of both state-based and image-based RL.
arXiv Detail & Related papers (2021-12-06T18:59:52Z) - A Physics Informed Neural Network Approach to Solution and
Identification of Biharmonic Equations of Elasticity [0.0]
We explore an application of the Physics Informed Neural Networks (PINNs) in conjunction with Airy stress functions and Fourier series.
We find that enriching feature space using Airy stress functions can significantly improve the accuracy of PINN solutions for biharmonic PDEs.
arXiv Detail & Related papers (2021-08-16T17:19:50Z) - Finite Basis Physics-Informed Neural Networks (FBPINNs): a scalable
domain decomposition approach for solving differential equations [20.277873724720987]
We propose a new, scalable approach for solving large problems relating to differential equations called Finite Basis PINNs (FBPINNs)
FBPINNs are inspired by classical finite element methods, where the solution of the differential equation is expressed as the sum of a finite set of basis functions with compact support.
In FBPINNs neural networks are used to learn these basis functions, which are defined over small, overlapping subdomain problems.
arXiv Detail & Related papers (2021-07-16T13:03:47Z) - Learning to Solve the AC-OPF using Sensitivity-Informed Deep Neural
Networks [52.32646357164739]
We propose a deep neural network (DNN) to solve the solutions of the optimal power flow (ACOPF)
The proposed SIDNN is compatible with a broad range of OPF schemes.
It can be seamlessly integrated in other learning-to-OPF schemes.
arXiv Detail & Related papers (2021-03-27T00:45:23Z) - Frequency Principle: Fourier Analysis Sheds Light on Deep Neural Networks [9.23835409289015]
We study the training process of Deep Neural Networks (DNNs) from the Fourier analysis perspective.
We demonstrate a very universal Frequency Principle (F-Principle) -- DNNs often fit target functions from low to high frequencies.
arXiv Detail & Related papers (2019-01-19T13:37:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.