The Smart Buildings Control Suite: A Diverse Open Source Benchmark to Evaluate and Scale HVAC Control Policies for Sustainability
- URL: http://arxiv.org/abs/2410.03756v2
- Date: Fri, 31 Jan 2025 14:29:42 GMT
- Title: The Smart Buildings Control Suite: A Diverse Open Source Benchmark to Evaluate and Scale HVAC Control Policies for Sustainability
- Authors: Judah Goldfeder, Victoria Dean, Zixin Jiang, Xuezheng Wang, Bing dong, Hod Lipson, John Sipple,
- Abstract summary: Commercial buildings account for 17% of U.S. carbon emissions.<n>Model Predictive Control and Reinforcement Learning have been used to optimize control policies, scaling to thousands of buildings remains a significant unsolved challenge.<n>We present the Smart Buildings Control Suite, the first open source interactive HVAC control benchmark.
- Score: 7.963101539809386
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Commercial buildings account for 17% of U.S. carbon emissions, with roughly half of that from Heating, Ventilation, and Air Conditioning (HVAC). HVAC devices form a complex thermodynamic system, and while Model Predictive Control and Reinforcement Learning have been used to optimize control policies, scaling to thousands of buildings remains a significant unsolved challenge. Most current algorithms are over-optimized for specific buildings and rely on proprietary data or hard-to-configure simulations. We present the Smart Buildings Control Suite, the first open source interactive HVAC control benchmark with a focus on solutions that scale. It consists of 3 components: real-world telemetric data extracted from 11 buildings over 6 years, a lightweight data-driven simulator for each building, and a modular Physically Informed Neural Network (PINN) building model as a simulator alternative. The buildings span a variety of climates, management systems, and sizes, and both the simulator and PINN easily scale to new buildings, ensuring solutions using this benchmark are robust to these factors and only reliant on fully scalable building models. This represents a major step towards scaling HVAC optimization from the lab to buildings everywhere. To facilitate use, our benchmark is compatible with the Gym standard, and our data is part of TensorFlow Datasets.
Related papers
- EnergyPlus Room Simulator [0.34263545581620375]
We present the tool EnergyPlus Room Simulator, which enables the simulation of indoor climate in a specific room of a building.
It allows to alter room models and simulate various factors such as temperature, humidity, and CO2 concentration.
The tool is intended to support scientific, building-related tasks such as occupancy detection on a room level by facilitating fast access to simulation data.
arXiv Detail & Related papers (2024-10-25T07:57:23Z) - D5RL: Diverse Datasets for Data-Driven Deep Reinforcement Learning [99.33607114541861]
We propose a new benchmark for offline RL that focuses on realistic simulations of robotic manipulation and locomotion environments.
Our proposed benchmark covers state-based and image-based domains, and supports both offline RL and online fine-tuning evaluation.
arXiv Detail & Related papers (2024-08-15T22:27:00Z) - Global Transformer Architecture for Indoor Room Temperature Forecasting [49.32130498861987]
This work presents a global Transformer architecture for indoor temperature forecasting in multi-room buildings.
It aims at optimizing energy consumption and reducing greenhouse gas emissions associated with HVAC systems.
Notably, this study is the first to apply a Transformer architecture for indoor temperature forecasting in multi-room buildings.
arXiv Detail & Related papers (2023-10-31T14:09:32Z) - Hybrid Reinforcement Learning for Optimizing Pump Sustainability in
Real-World Water Distribution Networks [55.591662978280894]
This article addresses the pump-scheduling optimization problem to enhance real-time control of real-world water distribution networks (WDNs)
Our primary objectives are to adhere to physical operational constraints while reducing energy consumption and operational costs.
Traditional optimization techniques, such as evolution-based and genetic algorithms, often fall short due to their lack of convergence guarantees.
arXiv Detail & Related papers (2023-10-13T21:26:16Z) - A Lightweight Calibrated Simulation Enabling Efficient Offline Learning
for Optimal Control of Real Buildings [3.2634122554914002]
We propose a novel simulation-based approach to train a Reinforcement Learning model.
Our open-source simulator is lightweight and calibrated via telemetry from the building to reach a higher level of fidelity.
This approach is an important step toward having a real-world RL control system that can be scaled to many buildings.
arXiv Detail & Related papers (2023-10-12T17:56:23Z) - Exploring Deep Reinforcement Learning for Holistic Smart Building
Control [3.463438487417909]
We develop a system called OCTOPUS that uses a data-driven approach to find the optimal control sequences of all building's subsystems.
OCTOPUS can achieve 14.26% and 8.1% energy savings compared with the state-of-the-art rule-based method in a LEED Gold Certified building.
arXiv Detail & Related papers (2023-01-27T03:03:21Z) - ClimaX: A foundation model for weather and climate [51.208269971019504]
ClimaX is a deep learning model for weather and climate science.
It can be pre-trained with a self-supervised learning objective on climate datasets.
It can be fine-tuned to address a breadth of climate and weather tasks.
arXiv Detail & Related papers (2023-01-24T23:19:01Z) - A Dynamic Feedforward Control Strategy for Energy-efficient Building
System Operation [59.56144813928478]
In current control strategies and optimization algorithms, most of them rely on receiving information from real-time feedback.
We propose an engineer-friendly control strategy framework that embeds dynamic prior knowledge from building system characteristics simultaneously for system control.
We tested it in a case for heating system control with typical control strategies, which shows our framework owns a further energy-saving potential of 15%.
arXiv Detail & Related papers (2023-01-23T09:07:07Z) - MERLIN: Multi-agent offline and transfer learning for occupant-centric
energy flexible operation of grid-interactive communities using smart meter
data and CityLearn [0.0]
Decarbonization of buildings presents new challenges for the reliability of the electrical grid.
We propose the MERLIN framework and use a digital twin of a real-world grid-interactive residential community in CityLearn.
We show that independent RL-controllers for batteries improve building and district level compared to a reference by tailoring their policies to individual buildings.
arXiv Detail & Related papers (2022-12-31T21:37:14Z) - BEAR: Physics-Principled Building Environment for Control and
Reinforcement Learning [9.66911049633598]
"BEAR" is a physics-principled Building Environment for Control And Reinforcement Learning.
It allows researchers to benchmark both model-based and model-free controllers using a broad collection of standard building models in Python without co-simulation using external building simulators.
We demonstrate the compatibility and performance of BEAR with different controllers, including both model predictive control (MPC) and several state-of-the-art RL methods with two case studies.
arXiv Detail & Related papers (2022-11-27T06:36:35Z) - Low Emission Building Control with Zero-Shot Reinforcement Learning [70.70479436076238]
Control via Reinforcement Learning (RL) has been shown to significantly improve building energy efficiency.
We show it is possible to obtain emission-reducing policies without a priori--a paradigm we call zero-shot building control.
arXiv Detail & Related papers (2022-08-12T17:13:25Z) - Using Machine Learning at Scale in HPC Simulations with SmartSim: An
Application to Ocean Climate Modeling [52.77024349608834]
We demonstrate the first climate-scale, numerical ocean simulations improved through distributed, online inference of Deep Neural Networks (DNN) using SmartSim.
SmartSim is a library dedicated to enabling online analysis and Machine Learning (ML) for traditional HPC simulations.
arXiv Detail & Related papers (2021-04-13T19:27:28Z) - A Framework for Energy and Carbon Footprint Analysis of Distributed and
Federated Edge Learning [48.63610479916003]
This article breaks down and analyzes the main factors that influence the environmental footprint of distributed learning policies.
It models both vanilla and decentralized FL policies driven by consensus.
Results show that FL allows remarkable end-to-end energy savings (30%-40%) for wireless systems characterized by low bit/Joule efficiency.
arXiv Detail & Related papers (2021-03-18T16:04:42Z) - AI Chiller: An Open IoT Cloud Based Machine Learning Framework for the
Energy Saving of Building HVAC System via Big Data Analytics on the Fusion of
BMS and Environmental Data [12.681421165031576]
Energy saving and carbon emission reduction in buildings is one of the key measures in combating climate change.
The optimization of chiller system power consumption had been extensively studied in the mechanical engineering and building service domains.
With the advance of big data and AI, the adoption of machine learning into the optimization problems becomes popular.
arXiv Detail & Related papers (2020-10-09T09:51:03Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
We propose a data-driven control algorithm based on neural networks to reduce this cost of model identification.
We validate our learning and control algorithms on a two-story building with ten independently controlled zones, located in Italy.
arXiv Detail & Related papers (2020-01-22T00:51:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.