Self-Powered LLM Modality Expansion for Large Speech-Text Models
- URL: http://arxiv.org/abs/2410.03798v2
- Date: Sun, 13 Oct 2024 14:46:26 GMT
- Title: Self-Powered LLM Modality Expansion for Large Speech-Text Models
- Authors: Tengfei Yu, Xuebo Liu, Zhiyi Hou, Liang Ding, Dacheng Tao, Min Zhang,
- Abstract summary: Large language models (LLMs) exhibit remarkable performance across diverse tasks.
This study aims to refine the use of speech datasets for LSM training by addressing the limitations of vanilla instruction tuning.
We introduce a self-powered LSM that leverages augmented automatic speech recognition data generated by the model itself for more effective instruction tuning.
- Score: 62.27700381806554
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) exhibit remarkable performance across diverse tasks, indicating their potential for expansion into large speech-text models (LSMs) by integrating speech capabilities. Although unified speech-text pre-training and multimodal data instruction-tuning offer considerable benefits, these methods generally entail significant resource demands and tend to overfit specific tasks. This study aims to refine the use of speech datasets for LSM training by addressing the limitations of vanilla instruction tuning. We explore the instruction-following dynamics within LSMs, identifying a critical issue termed speech anchor bias-a tendency for LSMs to over-rely on speech inputs, mistakenly interpreting the entire speech modality as directives, thereby neglecting textual instructions. To counteract this bias, we introduce a self-powered LSM that leverages augmented automatic speech recognition data generated by the model itself for more effective instruction tuning. Our experiments across a range of speech-based tasks demonstrate that self-powered LSM mitigates speech anchor bias and improves the fusion of speech and text modalities in LSMs. Data, code and scripts are freely available at https://github.com/ytf-philp/Self-powered-LSM.
Related papers
- Developing Instruction-Following Speech Language Model Without Speech Instruction-Tuning Data [84.01401439030265]
Recent end-to-end speech language models (SLMs) have expanded upon the capabilities of large language models (LLMs)
We present a simple yet effective automatic process for creating speech-text pair data.
Our model demonstrates general capabilities for speech-related tasks without the need for speech instruction-tuning data.
arXiv Detail & Related papers (2024-09-30T07:01:21Z) - Large Language Model Can Transcribe Speech in Multi-Talker Scenarios with Versatile Instructions [68.98811048970963]
We present a pioneering effort to investigate the capability of large language models (LLMs) in transcribing speech in multi-talker environments.
Our approach utilizes WavLM and Whisper encoder to extract multi-faceted speech representations that are sensitive to speaker characteristics and semantic context.
Comprehensive experiments reveal the promising performance of our proposed system, MT-LLM, in cocktail party scenarios.
arXiv Detail & Related papers (2024-09-13T07:28:28Z) - SpeechPrompt: Prompting Speech Language Models for Speech Processing Tasks [94.10497337235083]
We are first to explore the potential of prompting speech LMs in the domain of speech processing.
We reformulate speech processing tasks into speech-to-unit generation tasks.
We show that the prompting method can achieve competitive performance compared to the strong fine-tuning method.
arXiv Detail & Related papers (2024-08-23T13:00:10Z) - DeSTA: Enhancing Speech Language Models through Descriptive Speech-Text Alignment [82.86363991170546]
We propose a Descriptive Speech-Text Alignment approach that leverages speech captioning to bridge the gap between speech and text modalities.
Our model demonstrates superior performance on the Dynamic-SUPERB benchmark, particularly in generalizing to unseen tasks.
These findings highlight the potential to reshape instruction-following SLMs by incorporating descriptive rich, speech captions.
arXiv Detail & Related papers (2024-06-27T03:52:35Z) - Instruction-Following Speech Recognition [21.591086644665197]
We introduce instruction-following speech recognition, training a Listen-Attend-Spell model to understand and execute a diverse set of free-form text instructions.
Remarkably, our model, trained from scratch on Librispeech, interprets and executes simple instructions without requiring Large Language Models or pre-trained speech modules.
arXiv Detail & Related papers (2023-09-18T14:59:10Z) - Towards Language Modelling in the Speech Domain Using Sub-word
Linguistic Units [56.52704348773307]
We propose a novel LSTM-based generative speech LM based on linguistic units including syllables and phonemes.
With a limited dataset, orders of magnitude smaller than that required by contemporary generative models, our model closely approximates babbling speech.
We show the effect of training with auxiliary text LMs, multitask learning objectives, and auxiliary articulatory features.
arXiv Detail & Related papers (2021-10-31T22:48:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.