Hybrid NeRF-Stereo Vision: Pioneering Depth Estimation and 3D Reconstruction in Endoscopy
- URL: http://arxiv.org/abs/2410.04041v2
- Date: Thu, 10 Oct 2024 04:19:18 GMT
- Title: Hybrid NeRF-Stereo Vision: Pioneering Depth Estimation and 3D Reconstruction in Endoscopy
- Authors: Pengcheng Chen, Wenhao Li, Nicole Gunderson, Jeremy Ruthberg, Randall Bly, Waleed M. Abuzeid, Zhenglong Sun, Eric J. Seibel,
- Abstract summary: We introduce an innovative pipeline using Neural Radiance Fields (NeRF) for 3D reconstruction.
Our approach utilizes a preliminary NeRF reconstruction that yields a coarse model, then creates a binocular scene within the reconstructed environment.
High-fidelity depth maps are generated from monocular endoscopic video of a realistic cranial phantom.
- Score: 11.798218793025974
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The 3D reconstruction of the surgical field in minimally invasive endoscopic surgery has posed a formidable challenge when using conventional monocular endoscopes. Existing 3D reconstruction methodologies are frequently encumbered by suboptimal accuracy and limited generalization capabilities. In this study, we introduce an innovative pipeline using Neural Radiance Fields (NeRF) for 3D reconstruction. Our approach utilizes a preliminary NeRF reconstruction that yields a coarse model, then creates a binocular scene within the reconstructed environment, which derives an initial depth map via stereo vision. This initial depth map serves as depth supervision for subsequent NeRF iterations, progressively refining the 3D reconstruction with enhanced accuracy. The binocular depth is iteratively recalculated, with the refinement process continuing until the depth map converges, and exhibits negligible variations. Through this recursive process, high-fidelity depth maps are generated from monocular endoscopic video of a realistic cranial phantom. By repeated measures of the final 3D reconstruction compared to X-ray computed tomography, all differences of relevant clinical distances result in sub-millimeter accuracy.
Related papers
- Advancing Depth Anything Model for Unsupervised Monocular Depth Estimation in Endoscopy [2.906891207990726]
We introduce a novel fine-tuning strategy for the Depth Anything Model.
We integrate it with an intrinsic-based unsupervised monocular depth estimation framework.
Our results show that our method achieves state-of-the-art performance while minimizing the number of trainable parameters.
arXiv Detail & Related papers (2024-09-12T03:04:43Z) - High-fidelity Endoscopic Image Synthesis by Utilizing Depth-guided Neural Surfaces [18.948630080040576]
We introduce a novel method for colon section reconstruction by leveraging NeuS applied to endoscopic images, supplemented by a single frame of depth map.
Our approach demonstrates exceptional accuracy in completely rendering colon sections, even capturing unseen portions of the surface.
This breakthrough opens avenues for achieving stable and consistently scaled reconstructions, promising enhanced quality in cancer screening procedures and treatment interventions.
arXiv Detail & Related papers (2024-04-20T18:06:26Z) - Rotational Augmented Noise2Inverse for Low-dose Computed Tomography
Reconstruction [83.73429628413773]
Supervised deep learning methods have shown the ability to remove noise in images but require accurate ground truth.
We propose a novel self-supervised framework for LDCT, in which ground truth is not required for training the convolutional neural network (CNN)
Numerical and experimental results show that the reconstruction accuracy of N2I with sparse views is degrading while the proposed rotational augmented Noise2Inverse (RAN2I) method keeps better image quality over a different range of sampling angles.
arXiv Detail & Related papers (2023-12-19T22:40:51Z) - 3D Guidewire Shape Reconstruction from Monoplane Fluoroscopic Images [7.0968125126570625]
We propose a new method to reconstruct the 3D guidewire by utilizing CathSim, a state-of-the-art endovascular simulator.
Our 3D-FGRN delivers results on par with conventional triangulation from simulated monoplane fluoroscopic images.
arXiv Detail & Related papers (2023-11-19T03:20:42Z) - EyeLS: Shadow-Guided Instrument Landing System for Intraocular Target
Approaching in Robotic Eye Surgery [51.05595735405451]
Robotic ophthalmic surgery is an emerging technology to facilitate high-precision interventions such as retina penetration in subretinal injection and removal of floating tissues in retinal detachment.
Current image-based methods cannot effectively estimate the needle tip's trajectory towards both retinal and floating targets.
We propose to use the shadow positions of the target and the instrument tip to estimate their relative depth position.
Our method succeeds target approaching on a retina model, and achieves an average depth error of 0.0127 mm and 0.3473 mm for floating and retinal targets respectively in the surgical simulator.
arXiv Detail & Related papers (2023-11-15T09:11:37Z) - A Quantitative Evaluation of Dense 3D Reconstruction of Sinus Anatomy
from Monocular Endoscopic Video [8.32570164101507]
We perform a quantitative analysis of a self-supervised approach for sinus reconstruction using endoscopic sequences and optical tracking.
Our results show that the generated reconstructions are in high agreement with the anatomy, yielding an average point-to-mesh error of 0.91 mm.
We identify that pose and depth estimation inaccuracies contribute equally to this error and that locally consistent sequences with shorter trajectories generate more accurate reconstructions.
arXiv Detail & Related papers (2023-10-22T17:11:40Z) - AiAReSeg: Catheter Detection and Segmentation in Interventional
Ultrasound using Transformers [75.20925220246689]
endovascular surgeries are performed using the golden standard of Fluoroscopy, which uses ionising radiation to visualise catheters and vasculature.
This work proposes a solution using an adaptation of a state-of-the-art machine learning transformer architecture to detect and segment catheters in axial interventional Ultrasound image sequences.
arXiv Detail & Related papers (2023-09-25T19:34:12Z) - Medical needle tip tracking based on Optical Imaging and AI [0.0]
This paper presents an innovative technology for needle tip real-time tracking, aiming for enhanced needle insertion guidance.
Specifically, our approach revolves around the creation of scattering imaging using an optical fiber-equipped needle, and uses Convolutional Neural Network (CNN) based algorithms to enable real-time estimation of the needle tip's position and orientation.
Given the average femoral arterial radius of 4 to 5mm, the proposed system is demonstrated with a great potential for precise needle guidance in femoral artery insertion procedures.
arXiv Detail & Related papers (2023-08-28T10:30:08Z) - Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
We propose FocalSegNet, a novel 3D focal modulation UNet, to detect an aneurysm and offer an initial, coarse segmentation of it from time-of-flight MRA image patches.
We trained and evaluated our model on a public dataset, and in terms of UIA detection, our model showed a low false-positive rate of 0.21 and a high sensitivity of 0.80.
arXiv Detail & Related papers (2023-08-06T03:28:08Z) - A geometry-aware deep network for depth estimation in monocular
endoscopy [17.425158094539462]
The proposed method is extensively validated across different datasets and clinical images.
The generalizability of the proposed method achieves mean RMSE values of 12.604 (T1-L1), 9.930 (T2-L2), and 13.893 (colon) on the ColonDepth dataset.
arXiv Detail & Related papers (2023-04-20T11:59:32Z) - Clean-NeRF: Reformulating NeRF to account for View-Dependent
Observations [67.54358911994967]
This paper proposes Clean-NeRF for accurate 3D reconstruction and novel view rendering in complex scenes.
Clean-NeRF can be implemented as a plug-in that can immediately benefit existing NeRF-based methods without additional input.
arXiv Detail & Related papers (2023-03-26T12:24:31Z) - REGAS: REspiratory-GAted Synthesis of Views for Multi-Phase CBCT
Reconstruction from a single 3D CBCT Acquisition [75.64791080418162]
REGAS proposes a self-supervised method to synthesize the undersampled tomographic views and mitigate aliasing artifacts in reconstructed images.
To address the large memory cost of deep neural networks on high resolution 4D data, REGAS introduces a novel Ray Path Transformation (RPT) that allows for distributed, differentiable forward projections.
arXiv Detail & Related papers (2022-08-17T03:42:19Z) - MonoSDF: Exploring Monocular Geometric Cues for Neural Implicit Surface
Reconstruction [72.05649682685197]
State-of-the-art neural implicit methods allow for high-quality reconstructions of simple scenes from many input views.
This is caused primarily by the inherent ambiguity in the RGB reconstruction loss that does not provide enough constraints.
Motivated by recent advances in the area of monocular geometry prediction, we explore the utility these cues provide for improving neural implicit surface reconstruction.
arXiv Detail & Related papers (2022-06-01T17:58:15Z) - Neural 3D Reconstruction in the Wild [86.6264706256377]
We introduce a new method that enables efficient and accurate surface reconstruction from Internet photo collections.
We present a new benchmark and protocol for evaluating reconstruction performance on such in-the-wild scenes.
arXiv Detail & Related papers (2022-05-25T17:59:53Z) - ColDE: A Depth Estimation Framework for Colonoscopy Reconstruction [27.793186578742088]
In this work we have designed a set of training losses to deal with the special challenges of colonoscopy data.
With the training losses powerful enough, our self-supervised framework named ColDE is able to produce better depth maps of colonoscopy data.
arXiv Detail & Related papers (2021-11-19T04:44:27Z) - 3D Reconstruction of Curvilinear Structures with Stereo Matching
DeepConvolutional Neural Networks [52.710012864395246]
We propose a fully automated pipeline for both detection and matching of curvilinear structures in stereo pairs.
We mainly focus on 3D reconstruction of dislocations from stereo pairs of TEM images.
arXiv Detail & Related papers (2021-10-14T23:05:47Z) - Stereo Dense Scene Reconstruction and Accurate Laparoscope Localization
for Learning-Based Navigation in Robot-Assisted Surgery [37.14020061063255]
The computation of anatomical information and laparoscope position is a fundamental block of robot-assisted surgical navigation in Minimally Invasive Surgery (MIS)
We propose a learning-driven framework, in which an image-guided laparoscopic localization with 3D reconstructions of complex anatomical structures is hereby achieved.
arXiv Detail & Related papers (2021-10-08T06:12:18Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Tattoo tomography: Freehand 3D photoacoustic image reconstruction with
an optical pattern [49.240017254888336]
Photoacoustic tomography (PAT) is a novel imaging technique that can resolve both morphological and functional tissue properties.
A current drawback is the limited field-of-view provided by the conventionally applied 2D probes.
We present a novel approach to 3D reconstruction of PAT data that does not require an external tracking system.
arXiv Detail & Related papers (2020-11-10T09:27:56Z) - Probabilistic 3D surface reconstruction from sparse MRI information [58.14653650521129]
We present a novel probabilistic deep learning approach for concurrent 3D surface reconstruction from sparse 2D MR image data and aleatoric uncertainty prediction.
Our method is capable of reconstructing large surface meshes from three quasi-orthogonal MR imaging slices from limited training sets.
arXiv Detail & Related papers (2020-10-05T14:18:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.