Artistic Portrait Drawing with Vector Strokes
- URL: http://arxiv.org/abs/2410.04182v1
- Date: Sat, 5 Oct 2024 14:55:53 GMT
- Title: Artistic Portrait Drawing with Vector Strokes
- Authors: Yiqi Liang, Ying Liu, Dandan Long, Ruihui Li,
- Abstract summary: We present a method, VectorPD, for converting a given human face image into a vector portrait sketch.
Since vector graphics are composed of different shape primitives, it is challenging for rendering complex faces to accurately express facial details and structure.
- Score: 7.281215486388827
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a method, VectorPD, for converting a given human face image into a vector portrait sketch. VectorPD supports different levels of abstraction by simply controlling the number of strokes. Since vector graphics are composed of different shape primitives, it is challenging for rendering complex faces to accurately express facial details and structure. To address this, VectorPD employs a novel two-round optimization mechanism. We first initialize the strokes with facial keypoints, and generate a basic portrait sketch by a CLIP-based Semantic Loss. Then we complete the face structure through VGG-based Structure Loss, and propose a novel Crop-based Shadow Loss to enrich the shadow details of the sketch, achieving a visually pleasing portrait sketch. Quantitative and qualitative evaluations both demonstrate that the portrait sketches generated by VectorPD can produce better visual effects than existing state-of-the-art methods, maintaining as much fidelity as possible at different levels of abstraction.
Related papers
- VQ-SGen: A Vector Quantized Stroke Representation for Sketch Generation [12.486307321835909]
VQ-SGen is a novel algorithm for high-quality sketch generation.
By utilizing tokenized stroke representation, our approach generates strokes with high fidelity.
arXiv Detail & Related papers (2024-11-25T14:51:22Z) - Stylized Face Sketch Extraction via Generative Prior with Limited Data [6.727433982111717]
StyleSketch is a method for extracting high-resolution stylized sketches from a face image.
Using the rich semantics of the deep features from a pretrained StyleGAN, we are able to train a sketch generator with 16 pairs of face and the corresponding sketch images.
arXiv Detail & Related papers (2024-03-17T16:25:25Z) - PatternPortrait: Draw Me Like One of Your Scribbles [2.01243755755303]
This paper introduces a process for generating abstract portrait drawings from pictures.
Their unique style is created by utilizing single freehand pattern sketches as references to generate unique patterns for shading.
The method involves extracting facial and body features from images and transforming them into vector lines.
arXiv Detail & Related papers (2024-01-22T12:33:11Z) - Sketch Video Synthesis [52.134906766625164]
We propose a novel framework for sketching videos represented by the frame-wise B'ezier curve.
Our method unlocks applications in sketch-based video editing and video doodling, enabled through video composition.
arXiv Detail & Related papers (2023-11-26T14:14:04Z) - SENS: Part-Aware Sketch-based Implicit Neural Shape Modeling [124.3266213819203]
We present SENS, a novel method for generating and editing 3D models from hand-drawn sketches.
S SENS analyzes the sketch and encodes its parts into ViT patch encoding.
S SENS supports refinement via part reconstruction, allowing for nuanced adjustments and artifact removal.
arXiv Detail & Related papers (2023-06-09T17:50:53Z) - Make Your Brief Stroke Real and Stereoscopic: 3D-Aware Simplified Sketch
to Portrait Generation [51.64832538714455]
Existing studies only generate portraits in the 2D plane with fixed views, making the results less vivid.
In this paper, we present Stereoscopic Simplified Sketch-to-Portrait (SSSP), which explores the possibility of creating Stereoscopic 3D-aware portraits.
Our key insight is to design sketch-aware constraints that can fully exploit the prior knowledge of a tri-plane-based 3D-aware generative model.
arXiv Detail & Related papers (2023-02-14T06:28:42Z) - CLIPasso: Semantically-Aware Object Sketching [34.53644912236454]
We present an object sketching method that can achieve different levels of abstraction, guided by geometric and semantic simplifications.
We define a sketch as a set of B'ezier curves and use a differentiizer to optimize the parameters of the curves directly with respect to a CLIP-based perceptual loss.
arXiv Detail & Related papers (2022-02-11T18:35:25Z) - Quality Metric Guided Portrait Line Drawing Generation from Unpaired
Training Data [88.78171717494688]
We propose a novel method to automatically transform face photos to portrait drawings using unpaired training data.
Our method can (1) learn to generate high quality portrait drawings in multiple styles using a single network and (2) generate portrait drawings in a "new style" unseen in the training data.
arXiv Detail & Related papers (2022-02-08T06:49:57Z) - Differentiable Drawing and Sketching [0.0]
We present a differentiable relaxation of the process of drawing points, lines and curves into a pixel.
This relaxation allows end-to-end differentiable programs and deep networks to be learned and optimised.
arXiv Detail & Related papers (2021-03-30T09:25:55Z) - DeepFacePencil: Creating Face Images from Freehand Sketches [77.00929179469559]
Existing image-to-image translation methods require a large-scale dataset of paired sketches and images for supervision.
We propose DeepFacePencil, an effective tool that is able to generate photo-realistic face images from hand-drawn sketches.
arXiv Detail & Related papers (2020-08-31T03:35:21Z) - SketchDesc: Learning Local Sketch Descriptors for Multi-view
Correspondence [68.63311821718416]
We study the problem of multi-view sketch correspondence, where we take as input multiple freehand sketches with different views of the same object.
This problem is challenging since the visual features of corresponding points at different views can be very different.
We take a deep learning approach and learn a novel local sketch descriptor from data.
arXiv Detail & Related papers (2020-01-16T11:31:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.