Visualising Feature Learning in Deep Neural Networks by Diagonalizing the Forward Feature Map
- URL: http://arxiv.org/abs/2410.04264v1
- Date: Sat, 5 Oct 2024 18:53:48 GMT
- Title: Visualising Feature Learning in Deep Neural Networks by Diagonalizing the Forward Feature Map
- Authors: Yoonsoo Nam, Chris Mingard, Seok Hyeong Lee, Soufiane Hayou, Ard Louis,
- Abstract summary: We present a method for analysing feature learning by decomposing deep neural networks (DNNs)
We find that DNNs converge to a minimal feature (MF) regime dominated by a number of eigenfunctions equal to the number of classes.
We recast the phenomenon of neural collapse into a kernel picture which can be extended to broader tasks such as regression.
- Score: 4.776836972093627
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) exhibit a remarkable ability to automatically learn data representations, finding appropriate features without human input. Here we present a method for analysing feature learning by decomposing DNNs into 1) a forward feature-map $\Phi$ that maps the input dataspace to the post-activations of the penultimate layer, and 2) a final linear layer that classifies the data. We diagonalize $\Phi$ with respect to the gradient descent operator and track feature learning by measuring how the eigenfunctions and eigenvalues of $\Phi$ change during training. Across many popular architectures and classification datasets, we find that DNNs converge, after just a few epochs, to a minimal feature (MF) regime dominated by a number of eigenfunctions equal to the number of classes. This behaviour resembles the neural collapse phenomenon studied at longer training times. For other DNN-data combinations, such as a fully connected network on CIFAR10, we find an extended feature (EF) regime where significantly more features are used. Optimal generalisation performance upon hyperparameter tuning typically coincides with the MF regime, but we also find examples of poor performance within the MF regime. Finally, we recast the phenomenon of neural collapse into a kernel picture which can be extended to broader tasks such as regression.
Related papers
- Half-Space Feature Learning in Neural Networks [2.3249139042158853]
There currently exist two extreme viewpoints for neural network feature learning.
We argue neither interpretation is likely to be correct based on a novel viewpoint.
We use this alternate interpretation to motivate a model, called the Deep Linearly Gated Network (DLGN)
arXiv Detail & Related papers (2024-04-05T12:03:19Z) - How Graph Neural Networks Learn: Lessons from Training Dynamics [80.41778059014393]
We study the training dynamics in function space of graph neural networks (GNNs)
We find that the gradient descent optimization of GNNs implicitly leverages the graph structure to update the learned function.
This finding offers new interpretable insights into when and why the learned GNN functions generalize.
arXiv Detail & Related papers (2023-10-08T10:19:56Z) - Graph Neural Networks Provably Benefit from Structural Information: A
Feature Learning Perspective [53.999128831324576]
Graph neural networks (GNNs) have pioneered advancements in graph representation learning.
This study investigates the role of graph convolution within the context of feature learning theory.
arXiv Detail & Related papers (2023-06-24T10:21:11Z) - ReLU Neural Networks with Linear Layers are Biased Towards Single- and Multi-Index Models [9.96121040675476]
This manuscript explores how properties of functions learned by neural networks of depth greater than two layers affect predictions.
Our framework considers a family of networks of varying depths that all have the same capacity but different representation costs.
arXiv Detail & Related papers (2023-05-24T22:10:12Z) - Do deep neural networks have an inbuilt Occam's razor? [1.1470070927586016]
We show that structured data combined with an intrinsic Occam's razor-like inductive bias towards simple functions counteracts the exponential growth of functions with complexity.
This analysis reveals that structured data, combined with an intrinsic Occam's razor-like inductive bias towards (Kolmogorov) simple functions that is strong enough to counteract the exponential growth of functions with complexity, is a key to the success of DNNs.
arXiv Detail & Related papers (2023-04-13T16:58:21Z) - What Can Be Learnt With Wide Convolutional Neural Networks? [69.55323565255631]
We study infinitely-wide deep CNNs in the kernel regime.
We prove that deep CNNs adapt to the spatial scale of the target function.
We conclude by computing the generalisation error of a deep CNN trained on the output of another deep CNN.
arXiv Detail & Related papers (2022-08-01T17:19:32Z) - Deep Neural Network Classifier for Multi-dimensional Functional Data [4.340040784481499]
We propose a new approach, called as functional deep neural network (FDNN), for classifying multi-dimensional functional data.
Specifically, a deep neural network is trained based on the principle components of the training data which shall be used to predict the class label of a future data function.
arXiv Detail & Related papers (2022-05-17T19:22:48Z) - The merged-staircase property: a necessary and nearly sufficient condition for SGD learning of sparse functions on two-layer neural networks [19.899987851661354]
We study SGD-learnability with $O(d)$ sample complexity in a large ambient dimension.
Our main results characterize a hierarchical property, the "merged-staircase property", that is both necessary and nearly sufficient for learning in this setting.
Key tools are a new "dimension-free" dynamics approximation that applies to functions defined on a latent low-dimensional subspace.
arXiv Detail & Related papers (2022-02-17T13:43:06Z) - Redundant representations help generalization in wide neural networks [71.38860635025907]
We study the last hidden layer representations of various state-of-the-art convolutional neural networks.
We find that if the last hidden representation is wide enough, its neurons tend to split into groups that carry identical information, and differ from each other only by statistically independent noise.
arXiv Detail & Related papers (2021-06-07T10:18:54Z) - Rank-R FNN: A Tensor-Based Learning Model for High-Order Data
Classification [69.26747803963907]
Rank-R Feedforward Neural Network (FNN) is a tensor-based nonlinear learning model that imposes Canonical/Polyadic decomposition on its parameters.
First, it handles inputs as multilinear arrays, bypassing the need for vectorization, and can thus fully exploit the structural information along every data dimension.
We establish the universal approximation and learnability properties of Rank-R FNN, and we validate its performance on real-world hyperspectral datasets.
arXiv Detail & Related papers (2021-04-11T16:37:32Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
This paper proposes a new mean-field framework for over- parameterized deep neural networks (DNNs)
In this framework, a DNN is represented by probability measures and functions over its features in the continuous limit.
We illustrate the framework via the standard DNN and the Residual Network (Res-Net) architectures.
arXiv Detail & Related papers (2020-07-03T01:37:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.