Enhancing 3D Human Pose Estimation Amidst Severe Occlusion with Dual Transformer Fusion
- URL: http://arxiv.org/abs/2410.04574v1
- Date: Sun, 6 Oct 2024 18:15:27 GMT
- Title: Enhancing 3D Human Pose Estimation Amidst Severe Occlusion with Dual Transformer Fusion
- Authors: Mehwish Ghafoor, Arif Mahmood, Muhammad Bilal,
- Abstract summary: This paper introduces a Dual Transformer Fusion (DTF) algorithm, a novel approach to obtain a holistic 3D pose estimation.
To enable precise 3D Human Pose Estimation, our approach leverages the innovative DTF architecture, which first generates a pair of intermediate views.
Our approach outperforms existing state-of-the-art methods on both datasets, yielding substantial improvements.
- Score: 13.938406073551844
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the field of 3D Human Pose Estimation from monocular videos, the presence of diverse occlusion types presents a formidable challenge. Prior research has made progress by harnessing spatial and temporal cues to infer 3D poses from 2D joint observations. This paper introduces a Dual Transformer Fusion (DTF) algorithm, a novel approach to obtain a holistic 3D pose estimation, even in the presence of severe occlusions. Confronting the issue of occlusion-induced missing joint data, we propose a temporal interpolation-based occlusion guidance mechanism. To enable precise 3D Human Pose Estimation, our approach leverages the innovative DTF architecture, which first generates a pair of intermediate views. Each intermediate-view undergoes spatial refinement through a self-refinement schema. Subsequently, these intermediate-views are fused to yield the final 3D human pose estimation. The entire system is end-to-end trainable. Through extensive experiments conducted on the Human3.6M and MPI-INF-3DHP datasets, our method's performance is rigorously evaluated. Notably, our approach outperforms existing state-of-the-art methods on both datasets, yielding substantial improvements. The code is available here: https://github.com/MehwishG/DTF.
Related papers
- Hybrid 3D Human Pose Estimation with Monocular Video and Sparse IMUs [15.017274891943162]
Temporal 3D human pose estimation from monocular videos is a challenging task in human-centered computer vision.
Inertial sensor has been introduced to provide complementary source of information.
It remains challenging to integrate heterogeneous sensor data for producing physically rational 3D human poses.
arXiv Detail & Related papers (2024-04-27T09:02:42Z) - UPose3D: Uncertainty-Aware 3D Human Pose Estimation with Cross-View and Temporal Cues [55.69339788566899]
UPose3D is a novel approach for multi-view 3D human pose estimation.
It improves robustness and flexibility without requiring direct 3D annotations.
arXiv Detail & Related papers (2024-04-23T00:18:00Z) - JOTR: 3D Joint Contrastive Learning with Transformers for Occluded Human
Mesh Recovery [84.67823511418334]
This paper presents 3D JOint contrastive learning with TRansformers framework for handling occluded 3D human mesh recovery.
Our method includes an encoder-decoder transformer architecture to fuse 2D and 3D representations for achieving 2D$&$3D aligned results.
arXiv Detail & Related papers (2023-07-31T02:58:58Z) - DiffuPose: Monocular 3D Human Pose Estimation via Denoising Diffusion
Probabilistic Model [25.223801390996435]
This paper focuses on reconstructing a 3D pose from a single 2D keypoint detection.
We build a novel diffusion-based framework to effectively sample diverse 3D poses from an off-the-shelf 2D detector.
We evaluate our method on the widely adopted Human3.6M and HumanEva-I datasets.
arXiv Detail & Related papers (2022-12-06T07:22:20Z) - (Fusionformer):Exploiting the Joint Motion Synergy with Fusion Network
Based On Transformer for 3D Human Pose Estimation [1.52292571922932]
Many previous methods lack the understanding of local joint information.cite8888987considers the temporal relationship of a single joint in this work.
Our proposed textbfFusionformer method introduces a global-temporal self-trajectory module and a cross-temporal self-trajectory module.
The results show an improvement of 2.4% MPJPE and 4.3% P-MPJPE on the Human3.6M dataset.
arXiv Detail & Related papers (2022-10-08T12:22:10Z) - PoseTriplet: Co-evolving 3D Human Pose Estimation, Imitation, and
Hallucination under Self-supervision [102.48681650013698]
Existing self-supervised 3D human pose estimation schemes have largely relied on weak supervisions to guide the learning.
We propose a novel self-supervised approach that allows us to explicitly generate 2D-3D pose pairs for augmenting supervision.
This is made possible via introducing a reinforcement-learning-based imitator, which is learned jointly with a pose estimator alongside a pose hallucinator.
arXiv Detail & Related papers (2022-03-29T14:45:53Z) - Uncertainty-Aware Adaptation for Self-Supervised 3D Human Pose
Estimation [70.32536356351706]
We introduce MRP-Net that constitutes a common deep network backbone with two output heads subscribing to two diverse configurations.
We derive suitable measures to quantify prediction uncertainty at both pose and joint level.
We present a comprehensive evaluation of the proposed approach and demonstrate state-of-the-art performance on benchmark datasets.
arXiv Detail & Related papers (2022-03-29T07:14:58Z) - Synthetic Training for Monocular Human Mesh Recovery [100.38109761268639]
This paper aims to estimate 3D mesh of multiple body parts with large-scale differences from a single RGB image.
The main challenge is lacking training data that have complete 3D annotations of all body parts in 2D images.
We propose a depth-to-scale (D2S) projection to incorporate the depth difference into the projection function to derive per-joint scale variants.
arXiv Detail & Related papers (2020-10-27T03:31:35Z) - AdaFuse: Adaptive Multiview Fusion for Accurate Human Pose Estimation in
the Wild [77.43884383743872]
We present AdaFuse, an adaptive multiview fusion method to enhance the features in occluded views.
We extensively evaluate the approach on three public datasets including Human3.6M, Total Capture and CMU Panoptic.
We also create a large scale synthetic dataset Occlusion-Person, which allows us to perform numerical evaluation on the occluded joints.
arXiv Detail & Related papers (2020-10-26T03:19:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.