Evaluation of Code LLMs on Geospatial Code Generation
- URL: http://arxiv.org/abs/2410.04617v1
- Date: Sun, 6 Oct 2024 20:34:03 GMT
- Title: Evaluation of Code LLMs on Geospatial Code Generation
- Authors: Piotr Gramacki, Bruno Martins, Piotr SzymaĆski,
- Abstract summary: Large Language Models (LLMs) can generate Python code for data science and machine learning applications.
Here, we show how we constructed an evaluation benchmark for code generation models, based on a selection of geospatial tasks.
Our dataset will hopefully contribute to the development new models capable of solving geospatial coding tasks with high accuracy.
- Score: 1.6834474847800562
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Software development support tools have been studied for a long time, with recent approaches using Large Language Models (LLMs) for code generation. These models can generate Python code for data science and machine learning applications. LLMs are helpful for software engineers because they increase productivity in daily work. An LLM can also serve as a "mentor" for inexperienced software developers, and be a viable learning support. High-quality code generation with LLMs can also be beneficial in geospatial data science. However, this domain poses different challenges, and code generation LLMs are typically not evaluated on geospatial tasks. Here, we show how we constructed an evaluation benchmark for code generation models, based on a selection of geospatial tasks. We categorised geospatial tasks based on their complexity and required tools. Then, we created a dataset with tasks that test model capabilities in spatial reasoning, spatial data processing, and geospatial tools usage. The dataset consists of specific coding problems that were manually created for high quality. For every problem, we proposed a set of test scenarios that make it possible to automatically check the generated code for correctness. In addition, we tested a selection of existing code generation LLMs for code generation in the geospatial domain. We share our dataset and reproducible evaluation code on a public GitHub repository, arguing that this can serve as an evaluation benchmark for new LLMs in the future. Our dataset will hopefully contribute to the development new models capable of solving geospatial coding tasks with high accuracy. These models will enable the creation of coding assistants tailored for geospatial applications.
Related papers
- Automatic Generation of Benchmarks and Reliable LLM Judgment for Code Tasks [0.8274693573069442]
This work introduces a methodology to generate and evaluate LaaJ implementations, utilizing an automatically generated benchmark.
The benchmark is used both to develop and validate the LaaJs and to validate and test the LLM code related solution using the LaaJs.
Our approach enables the creation of high quality code task solutions.
arXiv Detail & Related papers (2024-10-28T14:34:36Z) - An LLM Agent for Automatic Geospatial Data Analysis [5.842462214442362]
Large language models (LLMs) are being used in data science code generation tasks.
Their application to geospatial data processing is challenging due to difficulties in incorporating complex data structures and spatial constraints.
We introduce GeoAgent, a new interactive framework designed to help LLMs handle geospatial data processing more effectively.
arXiv Detail & Related papers (2024-10-24T14:47:25Z) - Can Large Language Models Generate Geospatial Code? [1.8449647922514607]
This paper introduces GeoCode-Eval, a framework for assessing large language models' ability to generate geospatial code.
We developed a benchmark dataset, GeoCode-Bench, consisting of 5,000 multiple-choice, 1,500 fill-in-the-blank, 1,500 true/false questions, and 1,000 subjective tasks.
Using GeoCode-Bench, we evaluated three commercial closed-source LLMs, four open-source general-purpose LLMs, and 14 specialized code generation models.
arXiv Detail & Related papers (2024-10-13T06:14:27Z) - DOMAINEVAL: An Auto-Constructed Benchmark for Multi-Domain Code Generation [48.11754113512047]
This study includes a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains.
Our pipeline works in a fully automated manner, enabling a push-bottom construction from code repositories into formatted subjects under study.
The contributions of this study include a code generation benchmark dataset DOMAINEVAL, encompassing six popular domains, a fully automated pipeline for constructing code benchmarks, and an identification of the limitations of LLMs in code generation tasks based on their performance on DOMAINEVAL.
arXiv Detail & Related papers (2024-08-23T16:33:58Z) - CodeRAG-Bench: Can Retrieval Augment Code Generation? [78.37076502395699]
We conduct a systematic, large-scale analysis of code generation using retrieval-augmented generation.
We first curate a comprehensive evaluation benchmark, CodeRAG-Bench, encompassing three categories of code generation tasks.
We examine top-performing models on CodeRAG-Bench by providing contexts retrieved from one or multiple sources.
arXiv Detail & Related papers (2024-06-20T16:59:52Z) - SWT-Bench: Testing and Validating Real-World Bug-Fixes with Code Agents [10.730852617039451]
We investigate the capability of LLM-based Code Agents to formalize user issues into test cases.
We propose a novel benchmark based on popular GitHub repositories, containing real-world issues, ground-truth bug-fixes, and golden tests.
We find that LLMs generally perform surprisingly well at generating relevant test cases, with Code Agents designed for code repair exceeding the performance of systems designed for test generation.
arXiv Detail & Related papers (2024-06-18T14:54:37Z) - VersiCode: Towards Version-controllable Code Generation [58.82709231906735]
Large Language Models (LLMs) have made tremendous strides in code generation, but existing research fails to account for the dynamic nature of software development.
We propose two novel tasks aimed at bridging this gap: version-specific code completion (VSCC) and version-aware code migration (VACM)
We conduct an extensive evaluation on VersiCode, which reveals that version-controllable code generation is indeed a significant challenge.
arXiv Detail & Related papers (2024-06-11T16:15:06Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
We present GeoLLM, a novel method that can effectively extract geospatial knowledge from large language models.
We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods.
Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe.
arXiv Detail & Related papers (2023-10-10T00:03:23Z) - CRAFT: Customizing LLMs by Creating and Retrieving from Specialized
Toolsets [75.64181719386497]
We present CRAFT, a tool creation and retrieval framework for large language models (LLMs)
It creates toolsets specifically curated for the tasks and equips LLMs with a component that retrieves tools from these sets to enhance their capability to solve complex tasks.
Our method is designed to be flexible and offers a plug-and-play approach to adapt off-the-shelf LLMs to unseen domains and modalities, without any finetuning.
arXiv Detail & Related papers (2023-09-29T17:40:26Z) - Calculating Originality of LLM Assisted Source Code [0.0]
We propose a neural network-based tool to determine the original effort (and LLM's contribution) put by students in writing source codes.
Our tool is motivated by minimum description length measures like Kolmogorov complexity.
arXiv Detail & Related papers (2023-07-10T11:30:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.