TimeCNN: Refining Cross-Variable Interaction on Time Point for Time Series Forecasting
- URL: http://arxiv.org/abs/2410.04853v1
- Date: Mon, 7 Oct 2024 09:16:58 GMT
- Title: TimeCNN: Refining Cross-Variable Interaction on Time Point for Time Series Forecasting
- Authors: Ao Hu, Dongkai Wang, Yong Dai, Shiyi Qi, Liangjian Wen, Jun Wang, Zhi Chen, Xun Zhou, Zenglin Xu, Jiang Duan,
- Abstract summary: Transformer-based models demonstrate significant potential in modeling cross-time and cross-variable interaction.
We propose a TimeCNN model to refine cross-variable interactions to enhance time series forecasting.
Extensive experiments conducted on 12 real-world datasets demonstrate that TimeCNN consistently outperforms state-of-the-art models.
- Score: 44.04862924157323
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting is extensively applied across diverse domains. Transformer-based models demonstrate significant potential in modeling cross-time and cross-variable interaction. However, we notice that the cross-variable correlation of multivariate time series demonstrates multifaceted (positive and negative correlations) and dynamic progression over time, which is not well captured by existing Transformer-based models. To address this issue, we propose a TimeCNN model to refine cross-variable interactions to enhance time series forecasting. Its key innovation is timepoint-independent, where each time point has an independent convolution kernel, allowing each time point to have its independent model to capture relationships among variables. This approach effectively handles both positive and negative correlations and adapts to the evolving nature of variable relationships over time. Extensive experiments conducted on 12 real-world datasets demonstrate that TimeCNN consistently outperforms state-of-the-art models. Notably, our model achieves significant reductions in computational requirements (approximately 60.46%) and parameter count (about 57.50%), while delivering inference speeds 3 to 4 times faster than the benchmark iTransformer model
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - TiVaT: Joint-Axis Attention for Time Series Forecasting with Lead-Lag Dynamics [5.016178141636157]
TiVaT (Time-Variable Transformer) is a novel architecture that integrates temporal and variable dependencies.
TiVaT consistently delivers strong performance across diverse datasets.
This positions TiVaT as a new benchmark in MTS forecasting, particularly in handling datasets characterized by intricate and challenging dependencies.
arXiv Detail & Related papers (2024-10-02T13:24:24Z) - UniTST: Effectively Modeling Inter-Series and Intra-Series Dependencies for Multivariate Time Series Forecasting [98.12558945781693]
We propose a transformer-based model UniTST containing a unified attention mechanism on the flattened patch tokens.
Although our proposed model employs a simple architecture, it offers compelling performance as shown in our experiments on several datasets for time series forecasting.
arXiv Detail & Related papers (2024-06-07T14:39:28Z) - EdgeConvFormer: Dynamic Graph CNN and Transformer based Anomaly
Detection in Multivariate Time Series [7.514010315664322]
We propose a novel anomaly detection method, named EdgeConvFormer, which integrates stacked Time2vec embedding, dynamic graph CNN, and Transformer to extract global and local spatial-time information.
Experiments demonstrate that EdgeConvFormer can learn the spatial-temporal modeling from multivariate time series data and achieve better anomaly detection performance than the state-of-the-art approaches on many real-world datasets of different scales.
arXiv Detail & Related papers (2023-12-04T08:38:54Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Long-Range Transformers for Dynamic Spatiotemporal Forecasting [16.37467119526305]
Methods based on graph neural networks explicitly model variable relationships.
Long-Range Transformers can learn interactions between time, value, and information jointly along this extended sequence.
arXiv Detail & Related papers (2021-09-24T22:11:46Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
We propose a simple yet efficient instance-wise graph-based framework to utilize the inter-dependencies of different variables at different time stamps.
The key idea of our framework is aggregating information from the historical time series of different variables to the current time series that we need to forecast.
arXiv Detail & Related papers (2021-09-14T07:38:35Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - Pay Attention to Evolution: Time Series Forecasting with Deep
Graph-Evolution Learning [33.79957892029931]
This work presents a novel neural network architecture for time-series forecasting.
We named our method Recurrent Graph Evolution Neural Network (ReGENN)
An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones.
arXiv Detail & Related papers (2020-08-28T20:10:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.