Wide Neural Networks Trained with Weight Decay Provably Exhibit Neural Collapse
- URL: http://arxiv.org/abs/2410.04887v1
- Date: Mon, 7 Oct 2024 10:16:40 GMT
- Title: Wide Neural Networks Trained with Weight Decay Provably Exhibit Neural Collapse
- Authors: Arthur Jacot, Peter Súkeník, Zihan Wang, Marco Mondelli,
- Abstract summary: Deep neural networks (DNNs) at convergence consistently represent the training data in the last layer via a symmetric geometric structure referred to as neural collapse.
Here, the features of the penultimate layer are free variables, which makes the model data-agnostic and, hence, puts into question its ability to capture training.
We first prove generic guarantees on neural collapse that assume (i) low training error and balancedness of the linear layers, and (ii) bounded conditioning of the features before the linear part.
- Score: 32.06666853127924
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNNs) at convergence consistently represent the training data in the last layer via a highly symmetric geometric structure referred to as neural collapse. This empirical evidence has spurred a line of theoretical research aimed at proving the emergence of neural collapse, mostly focusing on the unconstrained features model. Here, the features of the penultimate layer are free variables, which makes the model data-agnostic and, hence, puts into question its ability to capture DNN training. Our work addresses the issue, moving away from unconstrained features and studying DNNs that end with at least two linear layers. We first prove generic guarantees on neural collapse that assume (i) low training error and balancedness of the linear layers (for within-class variability collapse), and (ii) bounded conditioning of the features before the linear part (for orthogonality of class-means, as well as their alignment with weight matrices). We then show that such assumptions hold for gradient descent training with weight decay: (i) for networks with a wide first layer, we prove low training error and balancedness, and (ii) for solutions that are either nearly optimal or stable under large learning rates, we additionally prove the bounded conditioning. Taken together, our results are the first to show neural collapse in the end-to-end training of DNNs.
Related papers
- Neural Collapse versus Low-rank Bias: Is Deep Neural Collapse Really Optimal? [21.05674840609307]
Deep neural networks (DNNs) exhibit a surprising structure in their final layer known as neural collapse (NC)
We focus on non-linear models of arbitrary depth in multi-class classification and reveal a surprising qualitative shift.
The main culprit is a low-rank bias of multi-layer regularization schemes.
arXiv Detail & Related papers (2024-05-23T11:55:49Z) - Benign Overfitting for Two-layer ReLU Convolutional Neural Networks [60.19739010031304]
We establish algorithm-dependent risk bounds for learning two-layer ReLU convolutional neural networks with label-flipping noise.
We show that, under mild conditions, the neural network trained by gradient descent can achieve near-zero training loss and Bayes optimal test risk.
arXiv Detail & Related papers (2023-03-07T18:59:38Z) - Neural Collapse in Deep Linear Networks: From Balanced to Imbalanced
Data [12.225207401994737]
We show that complex systems with massive amounts of parameters exhibit the same structural properties when training until convergence.
In particular, it has been observed that the last-layer features collapse to their class-means.
Our results demonstrate the convergence of the last-layer features and classifiers to a geometry consisting of vectors.
arXiv Detail & Related papers (2023-01-01T16:29:56Z) - Improved Convergence Guarantees for Shallow Neural Networks [91.3755431537592]
We prove convergence of depth 2 neural networks, trained via gradient descent, to a global minimum.
Our model has the following features: regression with quadratic loss function, fully connected feedforward architecture, RelU activations, Gaussian data instances, adversarial labels.
They strongly suggest that, at least in our model, the convergence phenomenon extends well beyond the NTK regime''
arXiv Detail & Related papers (2022-12-05T14:47:52Z) - Learning Low Dimensional State Spaces with Overparameterized Recurrent
Neural Nets [57.06026574261203]
We provide theoretical evidence for learning low-dimensional state spaces, which can also model long-term memory.
Experiments corroborate our theory, demonstrating extrapolation via learning low-dimensional state spaces with both linear and non-linear RNNs.
arXiv Detail & Related papers (2022-10-25T14:45:15Z) - Benign Overfitting in Two-layer Convolutional Neural Networks [90.75603889605043]
We study the benign overfitting phenomenon in training a two-layer convolutional neural network (CNN)
We show that when the signal-to-noise ratio satisfies a certain condition, a two-layer CNN trained by gradient descent can achieve arbitrarily small training and test loss.
On the other hand, when this condition does not hold, overfitting becomes harmful and the obtained CNN can only achieve constant level test loss.
arXiv Detail & Related papers (2022-02-14T07:45:51Z) - Benign Overfitting without Linearity: Neural Network Classifiers Trained
by Gradient Descent for Noisy Linear Data [44.431266188350655]
We consider the generalization error of two-layer neural networks trained to generalize by gradient descent.
We show that neural networks exhibit benign overfitting: they can be driven to zero training error, perfectly fitting any noisy training labels, and simultaneously achieve minimax optimal test error.
In contrast to previous work on benign overfitting that require linear or kernel-based predictors, our analysis holds in a setting where both the model and learning dynamics are fundamentally nonlinear.
arXiv Detail & Related papers (2022-02-11T23:04:00Z) - Over-parametrized neural networks as under-determined linear systems [31.69089186688224]
We show that it is unsurprising simple neural networks can achieve zero training loss.
We show that kernels typically associated with the ReLU activation function have fundamental flaws.
We propose new activation functions that avoid the pitfalls of ReLU in that they admit zero training loss solutions for any set of distinct data points.
arXiv Detail & Related papers (2020-10-29T21:43:00Z) - Revisiting Initialization of Neural Networks [72.24615341588846]
We propose a rigorous estimation of the global curvature of weights across layers by approximating and controlling the norm of their Hessian matrix.
Our experiments on Word2Vec and the MNIST/CIFAR image classification tasks confirm that tracking the Hessian norm is a useful diagnostic tool.
arXiv Detail & Related papers (2020-04-20T18:12:56Z) - Revealing the Structure of Deep Neural Networks via Convex Duality [70.15611146583068]
We study regularized deep neural networks (DNNs) and introduce a convex analytic framework to characterize the structure of hidden layers.
We show that a set of optimal hidden layer weights for a norm regularized training problem can be explicitly found as the extreme points of a convex set.
We apply the same characterization to deep ReLU networks with whitened data and prove the same weight alignment holds.
arXiv Detail & Related papers (2020-02-22T21:13:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.