L-C4: Language-Based Video Colorization for Creative and Consistent Color
- URL: http://arxiv.org/abs/2410.04972v2
- Date: Sun, 3 Nov 2024 09:27:15 GMT
- Title: L-C4: Language-Based Video Colorization for Creative and Consistent Color
- Authors: Zheng Chang, Shuchen Weng, Huan Ouyang, Yu Li, Si Li, Boxin Shi,
- Abstract summary: We present Language-based video colorization for Creative and Consistent Colors (L-C4)
Our model is built upon a pre-trained cross-modality generative model.
We propose temporally deformable attention to prevent flickering or color shifts, and cross-clip fusion to maintain long-term color consistency.
- Score: 59.069498113050436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automatic video colorization is inherently an ill-posed problem because each monochrome frame has multiple optional color candidates. Previous exemplar-based video colorization methods restrict the user's imagination due to the elaborate retrieval process. Alternatively, conditional image colorization methods combined with post-processing algorithms still struggle to maintain temporal consistency. To address these issues, we present Language-based video Colorization for Creative and Consistent Colors (L-C4) to guide the colorization process using user-provided language descriptions. Our model is built upon a pre-trained cross-modality generative model, leveraging its comprehensive language understanding and robust color representation abilities. We introduce the cross-modality pre-fusion module to generate instance-aware text embeddings, enabling the application of creative colors. Additionally, we propose temporally deformable attention to prevent flickering or color shifts, and cross-clip fusion to maintain long-term color consistency. Extensive experimental results demonstrate that L-C4 outperforms relevant methods, achieving semantically accurate colors, unrestricted creative correspondence, and temporally robust consistency.
Related papers
- Paint Bucket Colorization Using Anime Character Color Design Sheets [72.66788521378864]
We introduce inclusion matching, which allows the network to understand the relationships between segments.
Our network's training pipeline significantly improves performance in both colorization and consecutive frame colorization.
To support our network's training, we have developed a unique dataset named PaintBucket-Character.
arXiv Detail & Related papers (2024-10-25T09:33:27Z) - LatentColorization: Latent Diffusion-Based Speaker Video Colorization [1.2641141743223379]
We introduce a novel solution for achieving temporal consistency in video colorization.
We demonstrate strong improvements on established image quality metrics compared to other existing methods.
Our dataset encompasses a combination of conventional datasets and videos from television/movies.
arXiv Detail & Related papers (2024-05-09T12:06:06Z) - Learning Inclusion Matching for Animation Paint Bucket Colorization [76.4507878427755]
We introduce a new learning-based inclusion matching pipeline, which directs the network to comprehend the inclusion relationships between segments.
Our method features a two-stage pipeline that integrates a coarse color warping module with an inclusion matching module.
To facilitate the training of our network, we also develope a unique dataset, referred to as PaintBucket-Character.
arXiv Detail & Related papers (2024-03-27T08:32:48Z) - Control Color: Multimodal Diffusion-based Interactive Image Colorization [81.68817300796644]
Control Color (Ctrl Color) is a multi-modal colorization method that leverages the pre-trained Stable Diffusion (SD) model.
We present an effective way to encode user strokes to enable precise local color manipulation.
We also introduce a novel module based on self-attention and a content-guided deformable autoencoder to address the long-standing issues of color overflow and inaccurate coloring.
arXiv Detail & Related papers (2024-02-16T17:51:13Z) - DiffColor: Toward High Fidelity Text-Guided Image Colorization with
Diffusion Models [12.897939032560537]
We propose a new method called DiffColor to recover vivid colors conditioned on a prompt text.
We first fine-tune a pre-trained text-to-image model to generate colorized images using a CLIP-based contrastive loss.
Then we try to obtain an optimized text embedding aligning the colorized image and the text prompt, and a fine-tuned diffusion model enabling high-quality image reconstruction.
Our method can produce vivid and diverse colors with a few iterations, and keep the structure and background intact while having colors well-aligned with the target language guidance.
arXiv Detail & Related papers (2023-08-03T09:38:35Z) - Video Colorization with Pre-trained Text-to-Image Diffusion Models [19.807766482434563]
We present ColorDiffuser, an adaptation of a pre-trained text-to-image latent diffusion model for video colorization.
We propose two novel techniques to enhance the temporal coherence and maintain the vividness of colorization across frames.
arXiv Detail & Related papers (2023-06-02T17:58:00Z) - L-CAD: Language-based Colorization with Any-level Descriptions using
Diffusion Priors [62.80068955192816]
We propose a unified model to perform language-based colorization with any-level descriptions.
We leverage the pretrained cross-modality generative model for its robust language understanding and rich color priors.
With the proposed novel sampling strategy, our model achieves instance-aware colorization in diverse and complex scenarios.
arXiv Detail & Related papers (2023-05-24T14:57:42Z) - Temporally Consistent Video Colorization with Deep Feature Propagation
and Self-regularization Learning [90.38674162878496]
We propose a novel temporally consistent video colorization framework (TCVC)
TCVC effectively propagates frame-level deep features in a bidirectional way to enhance the temporal consistency of colorization.
Experiments demonstrate that our method can not only obtain visually pleasing colorized video, but also achieve clearly better temporal consistency than state-of-the-art methods.
arXiv Detail & Related papers (2021-10-09T13:00:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.