Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson-Romberg Extrapolation
- URL: http://arxiv.org/abs/2410.05106v1
- Date: Mon, 7 Oct 2024 15:02:48 GMT
- Title: Nonasymptotic Analysis of Stochastic Gradient Descent with the Richardson-Romberg Extrapolation
- Authors: Marina Sheshukova, Denis Belomestny, Alain Durmus, Eric Moulines, Alexey Naumov, Sergey Samsonov,
- Abstract summary: We address the problem of solving strongly convex and smooth problems using a descent gradient (SGD) algorithm with a constant step size.
We provide an expansion of the mean-squared error of the resulting estimator with respect to the number iterations of $n$.
We establish that this chain is geometrically ergodic with respect to a defined weighted Wasserstein semimetric.
- Score: 22.652143194356864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We address the problem of solving strongly convex and smooth minimization problems using stochastic gradient descent (SGD) algorithm with a constant step size. Previous works suggested to combine the Polyak-Ruppert averaging procedure with the Richardson-Romberg extrapolation technique to reduce the asymptotic bias of SGD at the expense of a mild increase of the variance. We significantly extend previous results by providing an expansion of the mean-squared error of the resulting estimator with respect to the number of iterations $n$. More precisely, we show that the mean-squared error can be decomposed into the sum of two terms: a leading one of order $\mathcal{O}(n^{-1/2})$ with explicit dependence on a minimax-optimal asymptotic covariance matrix, and a second-order term of order $\mathcal{O}(n^{-3/4})$ where the power $3/4$ can not be improved in general. We also extend this result to the $p$-th moment bound keeping optimal scaling of the remainders with respect to $n$. Our analysis relies on the properties of the SGD iterates viewed as a time-homogeneous Markov chain. In particular, we establish that this chain is geometrically ergodic with respect to a suitably defined weighted Wasserstein semimetric.
Related papers
- Optimal Extragradient-Based Bilinearly-Coupled Saddle-Point Optimization [116.89941263390769]
We consider the smooth convex-concave bilinearly-coupled saddle-point problem, $min_mathbfxmax_mathbfyF(mathbfx) + H(mathbfx,mathbfy)$, where one has access to first-order oracles for $F$, $G$ as well as the bilinear coupling function $H$.
We present a emphaccelerated gradient-extragradient (AG-EG) descent-ascent algorithm that combines extragrad
arXiv Detail & Related papers (2022-06-17T06:10:20Z) - Improved Convergence Rate of Stochastic Gradient Langevin Dynamics with
Variance Reduction and its Application to Optimization [50.83356836818667]
gradient Langevin Dynamics is one of the most fundamental algorithms to solve non-eps optimization problems.
In this paper, we show two variants of this kind, namely the Variance Reduced Langevin Dynamics and the Recursive Gradient Langevin Dynamics.
arXiv Detail & Related papers (2022-03-30T11:39:00Z) - Optimal and instance-dependent guarantees for Markovian linear stochastic approximation [47.912511426974376]
We show a non-asymptotic bound of the order $t_mathrmmix tfracdn$ on the squared error of the last iterate of a standard scheme.
We derive corollaries of these results for policy evaluation with Markov noise.
arXiv Detail & Related papers (2021-12-23T18:47:50Z) - Mean-Square Analysis with An Application to Optimal Dimension Dependence
of Langevin Monte Carlo [60.785586069299356]
This work provides a general framework for the non-asymotic analysis of sampling error in 2-Wasserstein distance.
Our theoretical analysis is further validated by numerical experiments.
arXiv Detail & Related papers (2021-09-08T18:00:05Z) - Last iterate convergence of SGD for Least-Squares in the Interpolation
regime [19.05750582096579]
We study the noiseless model in the fundamental least-squares setup.
We assume that an optimum predictor fits perfectly inputs and outputs $langle theta_*, phi(X) rangle = Y$, where $phi(X)$ stands for a possibly infinite dimensional non-linear feature map.
arXiv Detail & Related papers (2021-02-05T14:02:20Z) - ROOT-SGD: Sharp Nonasymptotics and Near-Optimal Asymptotics in a Single Algorithm [71.13558000599839]
We study the problem of solving strongly convex and smooth unconstrained optimization problems using first-order algorithms.
We devise a novel, referred to as Recursive One-Over-T SGD, based on an easily implementable, averaging of past gradients.
We prove that it simultaneously achieves state-of-the-art performance in both a finite-sample, nonasymptotic sense and an sense.
arXiv Detail & Related papers (2020-08-28T14:46:56Z) - Convergence of Langevin Monte Carlo in Chi-Squared and Renyi Divergence [8.873449722727026]
We show that the rate estimate $widetildemathcalO(depsilon-1)$ improves the previously known rates in both of these metrics.
In particular, for convex and firstorder smooth potentials, we show that LMC algorithm achieves the rate estimate $widetildemathcalO(depsilon-1)$ which improves the previously known rates in both of these metrics.
arXiv Detail & Related papers (2020-07-22T18:18:28Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z) - On Linear Stochastic Approximation: Fine-grained Polyak-Ruppert and
Non-Asymptotic Concentration [115.1954841020189]
We study the inequality and non-asymptotic properties of approximation procedures with Polyak-Ruppert averaging.
We prove a central limit theorem (CLT) for the averaged iterates with fixed step size and number of iterations going to infinity.
arXiv Detail & Related papers (2020-04-09T17:54:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.