Agnostic Smoothed Online Learning
- URL: http://arxiv.org/abs/2410.05124v2
- Date: Fri, 11 Oct 2024 20:21:51 GMT
- Title: Agnostic Smoothed Online Learning
- Authors: Moïse Blanchard,
- Abstract summary: We propose an algorithm to guarantee sublinear regret for smoothed online learning without prior knowledge of $mu$.
R-Cover has adaptive regret $tilde O(sqrtdT/sigma)$ for function classes with dimension $d$, which is optimal up to logarithmic factors.
- Score: 5.167069404528051
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Classical results in statistical learning typically consider two extreme data-generating models: i.i.d. instances from an unknown distribution, or fully adversarial instances, often much more challenging statistically. To bridge the gap between these models, recent work introduced the smoothed framework, in which at each iteration an adversary generates instances from a distribution constrained to have density bounded by $\sigma^{-1}$ compared to some fixed base measure $\mu$. This framework interpolates between the i.i.d. and adversarial cases, depending on the value of $\sigma$. For the classical online prediction problem, most prior results in smoothed online learning rely on the arguably strong assumption that the base measure $\mu$ is known to the learner, contrasting with standard settings in the PAC learning or consistency literature. We consider the general agnostic problem in which the base measure is unknown and values are arbitrary. Along this direction, Block et al. showed that empirical risk minimization has sublinear regret under the well-specified assumption. We propose an algorithm R-Cover based on recursive coverings which is the first to guarantee sublinear regret for agnostic smoothed online learning without prior knowledge of $\mu$. For classification, we prove that R-Cover has adaptive regret $\tilde O(\sqrt{dT/\sigma})$ for function classes with VC dimension $d$, which is optimal up to logarithmic factors. For regression, we establish that R-Cover has sublinear oblivious regret for function classes with polynomial fat-shattering dimension growth.
Related papers
- Agnostically Learning Multi-index Models with Queries [54.290489524576756]
We study the power of query access for the task of agnostic learning under the Gaussian distribution.
We show that query access gives significant runtime improvements over random examples for agnostically learning MIMs.
arXiv Detail & Related papers (2023-12-27T15:50:47Z) - Variance-Aware Regret Bounds for Stochastic Contextual Dueling Bandits [53.281230333364505]
This paper studies the problem of contextual dueling bandits, where the binary comparison of dueling arms is generated from a generalized linear model (GLM)
We propose a new SupLinUCB-type algorithm that enjoys computational efficiency and a variance-aware regret bound $tilde Obig(dsqrtsum_t=1Tsigma_t2 + dbig)$.
Our regret bound naturally aligns with the intuitive expectation in scenarios where the comparison is deterministic, the algorithm only suffers from an $tilde O(d)$ regret.
arXiv Detail & Related papers (2023-10-02T08:15:52Z) - Restricted Strong Convexity of Deep Learning Models with Smooth
Activations [31.003601717265006]
We study the problem of optimization of deep learning models with smooth activation functions.
We introduce a new analysis of optimization based on Restricted Strong Convexity (RSC)
Ours is the first result on establishing geometric convergence of GD based on RSC for deep learning models.
arXiv Detail & Related papers (2022-09-29T21:24:26Z) - First-Order Regret in Reinforcement Learning with Linear Function
Approximation: A Robust Estimation Approach [57.570201404222935]
We show that it is possible to obtain regret scaling as $mathcalO(sqrtV_1star K)$ in reinforcement learning with large state spaces.
We demonstrate that existing techniques based on at least squares estimation are insufficient to obtain this result.
arXiv Detail & Related papers (2021-12-07T00:29:57Z) - Fast Rates for Nonparametric Online Learning: From Realizability to
Learning in Games [36.969021834291745]
We propose a proper learning algorithm which gets a near-optimal mistake bound in terms of the sequential fat-shattering dimension of the hypothesis class.
This result answers a question as to whether proper learners could achieve near-optimal mistake bounds.
For the real-valued (regression) setting, the optimal mistake bound was not even known for improper learners.
arXiv Detail & Related papers (2021-11-17T05:24:21Z) - Online Selective Classification with Limited Feedback [82.68009460301585]
We study selective classification in the online learning model, wherein a predictor may abstain from classifying an instance.
Two salient aspects of the setting we consider are that the data may be non-realisable, due to which abstention may be a valid long-term action.
We construct simple versioning-based schemes for any $mu in (0,1],$ that make most $Tmu$ mistakes while incurring smash$tildeO(T1-mu)$ excess abstention against adaptive adversaries.
arXiv Detail & Related papers (2021-10-27T08:00:53Z) - Breaking the Sample Complexity Barrier to Regret-Optimal Model-Free
Reinforcement Learning [52.76230802067506]
A novel model-free algorithm is proposed to minimize regret in episodic reinforcement learning.
The proposed algorithm employs an em early-settled reference update rule, with the aid of two Q-learning sequences.
The design principle of our early-settled variance reduction method might be of independent interest to other RL settings.
arXiv Detail & Related papers (2021-10-09T21:13:48Z) - Towards an Understanding of Benign Overfitting in Neural Networks [104.2956323934544]
Modern machine learning models often employ a huge number of parameters and are typically optimized to have zero training loss.
We examine how these benign overfitting phenomena occur in a two-layer neural network setting.
We show that it is possible for the two-layer ReLU network interpolator to achieve a near minimax-optimal learning rate.
arXiv Detail & Related papers (2021-06-06T19:08:53Z) - Localization, Convexity, and Star Aggregation [0.0]
Offset Rademacher complexities have been shown to imply sharp, linear-dependent upper bounds for the square loss.
We show that in the statistical setting, the offset bound can be generalized to any loss satisfying certain uniform convexity.
arXiv Detail & Related papers (2021-05-19T00:47:59Z) - Estimating Stochastic Linear Combination of Non-linear Regressions
Efficiently and Scalably [23.372021234032363]
We show that when the sub-sample sizes are large then the estimation errors will be sacrificed by too much.
To the best of our knowledge, this is the first work that and guarantees for the lineartext+Stochasticity model.
arXiv Detail & Related papers (2020-10-19T07:15:38Z) - Statistical-Query Lower Bounds via Functional Gradients [19.5924910463796]
We show that any statistical-query algorithm with tolerance $n- (1/epsilon)b$ must use at least $2nc epsilon$ queries for some constant $b.
Our results rule out general (as opposed to correlational) SQ learning algorithms, which is unusual for real-valued learning problems.
arXiv Detail & Related papers (2020-06-29T05:15:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.