VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks
- URL: http://arxiv.org/abs/2410.05160v3
- Date: Thu, 02 Jan 2025 05:26:47 GMT
- Title: VLM2Vec: Training Vision-Language Models for Massive Multimodal Embedding Tasks
- Authors: Ziyan Jiang, Rui Meng, Xinyi Yang, Semih Yavuz, Yingbo Zhou, Wenhu Chen,
- Abstract summary: We study the potential for building universal embeddings capable of handling a wide range of downstream tasks.
We build a series of VLM2Vec models on SoTA VLMs like Phi-3.5-V, LLaVA-1.6 and evaluate them on MMEB's evaluation split.
Our results show that VLM2Vec achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models.
- Score: 60.5257456681402
- License:
- Abstract: Embedding models have been crucial in enabling various downstream tasks such as semantic similarity, information retrieval, and clustering. Recently, there has been a surge of interest in developing universal text embedding models that can generalize across tasks (e.g., MTEB). However, progress in learning universal multimodal embedding models has been relatively slow despite its importance and practicality. In this work, we aim to explore the potential for building universal embeddings capable of handling a wide range of downstream tasks. Our contributions are twofold: (1) MMEB (Massive Multimodal Embedding Benchmark), which covers 4 meta-tasks (i.e. classification, visual question answering, multimodal retrieval, and visual grounding) and 36 datasets, including 20 training and 16 evaluation datasets covering both in-distribution and out-of-distribution tasks, and (2) VLM2Vec (Vision-Language Model -> Vector), a contrastive training framework that converts any state-of-the-art vision-language model into an embedding model via training on MMEB. Unlike previous models such as CLIP and BLIP, which encodes text or images independently without any task instruction, VLM2Vec can process any combination of images and text to generate a fixed-dimensional vector based on task instructions. We build a series of VLM2Vec models on SoTA VLMs like Phi-3.5-V, LLaVA-1.6 and evaluate them on MMEB's evaluation split. Our results show that VLM2Vec achieves an absolute average improvement of 10% to 20% over existing multimodal embedding models on both in-distribution and out-of-distribution datasets in MMEB. We show that VLMs are secretly strong embedding models.
Related papers
- Expanding Performance Boundaries of Open-Source Multimodal Models with Model, Data, and Test-Time Scaling [128.24325909395188]
We introduce InternVL 2.5, an advanced multimodal large language model (MLLM) series that builds upon InternVL 2.0.
InternVL 2.5 exhibits competitive performance, rivaling leading commercial models such as GPT-4o and Claude-3.5-Sonnet.
We hope this model contributes to the open-source community by setting new standards for developing and applying multimodal AI systems.
arXiv Detail & Related papers (2024-12-06T18:57:08Z) - NVLM: Open Frontier-Class Multimodal LLMs [64.00053046838225]
We introduce NVLM 1.0, a family of frontier-class multimodal large language models (LLMs) that achieve state-of-the-art results on vision-language tasks.
We propose a novel architecture that enhances both training efficiency and multimodal reasoning capabilities.
We develop production-grade multimodality for the NVLM-1.0 models, enabling them to excel in vision-language tasks.
arXiv Detail & Related papers (2024-09-17T17:59:06Z) - 4M-21: An Any-to-Any Vision Model for Tens of Tasks and Modalities [17.374241865041856]
We show the possibility of training one model to solve at least 3x more tasks/modalities than existing ones and doing so without a loss in performance.
We successfully scale the training to a three billion parameter model using tens of modalities and different datasets.
The resulting models and training code are open sourced at 4m.epfl.ch.
arXiv Detail & Related papers (2024-06-13T17:59:42Z) - Instruction-Guided Visual Masking [25.26544571379426]
Instruction-guided Visual Masking (IVM) is a versatile visual grounding model that is compatible with diverse multimodal models.
IVM-enhanced multimodal models can effectively focus on task-relevant image regions to better align with complex instructions.
arXiv Detail & Related papers (2024-05-30T07:48:32Z) - Multi-modal Auto-regressive Modeling via Visual Words [96.25078866446053]
We propose the concept of visual tokens, which maps the visual features to probability distributions over Large Multi-modal Models' vocabulary.
We further explore the distribution of visual features in the semantic space within LMM and the possibility of using text embeddings to represent visual information.
arXiv Detail & Related papers (2024-03-12T14:58:52Z) - Exploring the Frontier of Vision-Language Models: A Survey of Current Methodologies and Future Directions [11.786387517781328]
Vision-Language Models (VLMs) are advanced models that can tackle more intricate tasks such as image captioning and visual question answering.
Our classification organizes VLMs into three distinct categories: models dedicated to vision-language understanding, models that process multimodal inputs to generate unimodal (textual) outputs and models that both accept and produce multimodal inputs and outputs.
We meticulously dissect each model, offering an extensive analysis of its foundational architecture, training data sources, as well as its strengths and limitations wherever possible.
arXiv Detail & Related papers (2024-02-20T18:57:34Z) - Reformulating Vision-Language Foundation Models and Datasets Towards
Universal Multimodal Assistants [65.47222691674074]
Muffin framework employs pre-trained vision-language models to act as providers of visual signals.
UniMM-Chat dataset explores the complementarities of datasets to generate 1.1M high-quality and diverse multimodal instructions.
arXiv Detail & Related papers (2023-10-01T12:35:18Z) - ProbVLM: Probabilistic Adapter for Frozen Vision-Language Models [69.50316788263433]
We propose ProbVLM, a probabilistic adapter that estimates probability distributions for the embeddings of pre-trained vision-language models.
We quantify the calibration of embedding uncertainties in retrieval tasks and show that ProbVLM outperforms other methods.
We present a novel technique for visualizing the embedding distributions using a large-scale pre-trained latent diffusion model.
arXiv Detail & Related papers (2023-07-01T18:16:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.