Cookbook: A framework for improving LLM generative abilities via programmatic data generating templates
- URL: http://arxiv.org/abs/2410.05224v1
- Date: Mon, 7 Oct 2024 17:29:40 GMT
- Title: Cookbook: A framework for improving LLM generative abilities via programmatic data generating templates
- Authors: Avanika Narayan, Mayee F. Chen, Kush Bhatia, Christopher RĂ©,
- Abstract summary: Cookbook is a framework that generates training data consisting of simple patterns over random tokens.
We find that finetuning on Cookbook-generated data is able to improve performance on its corresponding task by up to 52.7 accuracy points.
- Score: 57.29125360837203
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Fine-tuning large language models (LLMs) on instruction datasets is a common way to improve their generative capabilities. However, instruction datasets can be expensive and time-consuming to manually curate, and while LLM-generated data is less labor-intensive, it may violate user privacy agreements or terms of service of LLM providers. Therefore, we seek a way of constructing instruction datasets with samples that are not generated by humans or LLMs but still improve LLM generative capabilities. In this work, we introduce Cookbook, a framework that programmatically generates training data consisting of simple patterns over random tokens, resulting in a scalable, cost-effective approach that avoids legal and privacy issues. First, Cookbook uses a template -- a data generating Python function -- to produce training data that encourages the model to learn an explicit pattern-based rule that corresponds to a desired task. We find that fine-tuning on Cookbook-generated data is able to improve performance on its corresponding task by up to 52.7 accuracy points. Second, since instruction datasets improve performance on multiple downstream tasks simultaneously, Cookbook algorithmically learns how to mix data from various templates to optimize performance on multiple tasks. On the standard multi-task GPT4ALL evaluation suite, Mistral-7B fine-tuned using a Cookbook-generated dataset attains the best accuracy on average compared to other 7B parameter instruction-tuned models and is the best performing model on 3 out of 8 tasks. Finally, we analyze when and why Cookbook improves performance and present a metric that allows us to verify that the improvement is largely explained by the model's generations adhering better to template rules.
Related papers
- Forewarned is Forearmed: Leveraging LLMs for Data Synthesis through Failure-Inducing Exploration [90.41908331897639]
Large language models (LLMs) have significantly benefited from training on diverse, high-quality task-specific data.
We present a novel approach, ReverseGen, designed to automatically generate effective training samples.
arXiv Detail & Related papers (2024-10-22T06:43:28Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
Large language models (LLMs) hold the promise of solving diverse tasks when provided with appropriate natural language prompts.
We propose SELF-GUIDE, a multi-stage mechanism in which we synthesize task-specific input-output pairs from the student LLM.
We report an absolute improvement of approximately 15% for classification tasks and 18% for generation tasks in the benchmark's metrics.
arXiv Detail & Related papers (2024-07-16T04:41:58Z) - Automated Data Curation for Robust Language Model Fine-Tuning [13.8454385440986]
We introduce an automated data curation pipeline CLEAR for instruction tuning datasets.
CLEAR estimates which training data is low-quality and either filters or corrects it.
Experiments reveal that CLEAR consistently improves the performance of fine-tuned models across many datasets and models.
arXiv Detail & Related papers (2024-03-19T14:44:45Z) - Learning to Generate Instruction Tuning Datasets for Zero-Shot Task Adaptation [9.574486521686323]
Bonito is a model for conditional task generation that converts unannotated text into task-specific training datasets for instruction tuning.
We show that Bonito significantly improves the average performance of pretrained and instruction tuned models over the de facto self supervised baseline.
arXiv Detail & Related papers (2024-02-28T13:54:57Z) - Efficient Grammatical Error Correction Via Multi-Task Training and
Optimized Training Schedule [55.08778142798106]
We propose auxiliary tasks that exploit the alignment between the original and corrected sentences.
We formulate each task as a sequence-to-sequence problem and perform multi-task training.
We find that the order of datasets used for training and even individual instances within a dataset may have important effects on the final performance.
arXiv Detail & Related papers (2023-11-20T14:50:12Z) - Dynosaur: A Dynamic Growth Paradigm for Instruction-Tuning Data Curation [92.2167864437497]
We propose Dynosaur, a dynamic growth paradigm for the automatic curation of instruction-tuning data.
Based on the metadata of existing datasets, we use LLMs to automatically construct instruction-tuning data by identifying relevant data fields and generating appropriate instructions.
By leveraging the existing annotated datasets, Dynosaur offers several advantages: 1) it reduces the API cost for generating instructions; 2) it provides high-quality data for instruction tuning; and 3) it supports the continuous improvement of models by generating instruction-tuning data when a new annotated dataset becomes available.
arXiv Detail & Related papers (2023-05-23T17:56:26Z) - PiVe: Prompting with Iterative Verification Improving Graph-based Generative Capability of LLMs [28.33598529903845]
We show how a small language model could be trained to act as a verifier module for the output of an large language model.
We also show how the verifier module could apply iterative corrections offline for a more cost-effective solution to the text-to-graph generation task.
arXiv Detail & Related papers (2023-05-21T08:11:24Z) - Model-Agnostic Multitask Fine-tuning for Few-shot Vision-Language
Transfer Learning [59.38343286807997]
We propose Model-Agnostic Multitask Fine-tuning (MAMF) for vision-language models on unseen tasks.
Compared with model-agnostic meta-learning (MAML), MAMF discards the bi-level optimization and uses only first-order gradients.
We show that MAMF consistently outperforms the classical fine-tuning method for few-shot transfer learning on five benchmark datasets.
arXiv Detail & Related papers (2022-03-09T17:26:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.