Grounding Partially-Defined Events in Multimodal Data
- URL: http://arxiv.org/abs/2410.05267v1
- Date: Mon, 7 Oct 2024 17:59:48 GMT
- Title: Grounding Partially-Defined Events in Multimodal Data
- Authors: Kate Sanders, Reno Kriz, David Etter, Hannah Recknor, Alexander Martin, Cameron Carpenter, Jingyang Lin, Benjamin Van Durme,
- Abstract summary: We introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task.
We propose a benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities.
Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
- Score: 61.0063273919745
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: How are we able to learn about complex current events just from short snippets of video? While natural language enables straightforward ways to represent under-specified, partially observable events, visual data does not facilitate analogous methods and, consequently, introduces unique challenges in event understanding. With the growing prevalence of vision-capable AI agents, these systems must be able to model events from collections of unstructured video data. To tackle robust event modeling in multimodal settings, we introduce a multimodal formulation for partially-defined events and cast the extraction of these events as a three-stage span retrieval task. We propose a corresponding benchmark for this task, MultiVENT-G, that consists of 14.5 hours of densely annotated current event videos and 1,168 text documents, containing 22.8K labeled event-centric entities. We propose a collection of LLM-driven approaches to the task of multimodal event analysis, and evaluate them on MultiVENT-G. Results illustrate the challenges that abstract event understanding poses and demonstrates promise in event-centric video-language systems.
Related papers
- MultiVENT 2.0: A Massive Multilingual Benchmark for Event-Centric Video Retrieval [57.891157692501345]
$textbfMultiVENT 2.0$ is a large-scale, multilingual event-centric video retrieval benchmark.
It features a collection of more than 218,000 news videos and 3,906 queries targeting specific world events.
Preliminary results show that state-of-the-art vision-language models struggle significantly with this task.
arXiv Detail & Related papers (2024-10-15T13:56:34Z) - Generating Event-oriented Attribution for Movies via Two-Stage Prefix-Enhanced Multimodal LLM [47.786978666537436]
We propose a Two-Stage Prefix-Enhanced MLLM (TSPE) approach for event attribution in movie videos.
In the local stage, we introduce an interaction-aware prefix that guides the model to focus on the relevant multimodal information within a single clip.
In the global stage, we strengthen the connections between associated events using an inferential knowledge graph.
arXiv Detail & Related papers (2024-09-14T08:30:59Z) - EA-VTR: Event-Aware Video-Text Retrieval [97.30850809266725]
Event-Aware Video-Text Retrieval model achieves powerful video-text retrieval ability through superior video event awareness.
EA-VTR can efficiently encode frame-level and video-level visual representations simultaneously, enabling detailed event content and complex event temporal cross-modal alignment.
arXiv Detail & Related papers (2024-07-10T09:09:58Z) - Beyond Grounding: Extracting Fine-Grained Event Hierarchies Across
Modalities [43.048896440009784]
We propose the task of extracting event hierarchies from multimodal (video and text) data.
This reveals the structure of events and is critical to understanding them.
We show the limitations of state-of-the-art unimodal and multimodal baselines on this task.
arXiv Detail & Related papers (2022-06-14T23:24:15Z) - PILED: An Identify-and-Localize Framework for Few-Shot Event Detection [79.66042333016478]
In our study, we employ cloze prompts to elicit event-related knowledge from pretrained language models.
We minimize the number of type-specific parameters, enabling our model to quickly adapt to event detection tasks for new types.
arXiv Detail & Related papers (2022-02-15T18:01:39Z) - Joint Multimedia Event Extraction from Video and Article [51.159034070824056]
We propose the first approach to jointly extract events from video and text articles.
First, we propose the first self-supervised multimodal event coreference model.
Second, we introduce the first multimodal transformer which extracts structured event information jointly from both videos and text documents.
arXiv Detail & Related papers (2021-09-27T03:22:12Z) - Team RUC_AIM3 Technical Report at Activitynet 2020 Task 2: Exploring
Sequential Events Detection for Dense Video Captioning [63.91369308085091]
We propose a novel and simple model for event sequence generation and explore temporal relationships of the event sequence in the video.
The proposed model omits inefficient two-stage proposal generation and directly generates event boundaries conditioned on bi-directional temporal dependency in one pass.
The overall system achieves state-of-the-art performance on the dense-captioning events in video task with 9.894 METEOR score on the challenge testing set.
arXiv Detail & Related papers (2020-06-14T13:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.