HiRT: Enhancing Robotic Control with Hierarchical Robot Transformers
- URL: http://arxiv.org/abs/2410.05273v3
- Date: Mon, 03 Feb 2025 04:07:37 GMT
- Title: HiRT: Enhancing Robotic Control with Hierarchical Robot Transformers
- Authors: Jianke Zhang, Yanjiang Guo, Xiaoyu Chen, Yen-Jen Wang, Yucheng Hu, Chengming Shi, Jianyu Chen,
- Abstract summary: Large Vision-Language-Action (VLA) models have shown promise in robotic control due to their impressive generalization ability.
Their reliance on VLM backends with billions of parameters leads to high computational costs and latency inference.
This paper proposes HiRT, a Hierarchical Robot Transformer framework that enables flexible frequency and performance trade-off.
- Score: 12.373320641721344
- License:
- Abstract: Large Vision-Language-Action (VLA) models, leveraging powerful pre trained Vision-Language Models (VLMs) backends, have shown promise in robotic control due to their impressive generalization ability. However, the success comes at a cost. Their reliance on VLM backends with billions of parameters leads to high computational costs and inference latency, limiting the testing scenarios to mainly quasi-static tasks and hindering performance in dynamic tasks requiring rapid interactions. To address these limitations, this paper proposes HiRT, a Hierarchical Robot Transformer framework that enables flexible frequency and performance trade-off. HiRT keeps VLMs running at low frequencies to capture temporarily invariant features while enabling real-time interaction through a high-frequency vision-based policy guided by the slowly updated features. Experiment results in both simulation and real-world settings demonstrate significant improvements over baseline methods. Empirically, in static tasks, we double the control frequency and achieve comparable success rates. Additionally, on novel real-world dynamic ma nipulation tasks which are challenging for previous VLA models, HiRT improves the success rate from 48% to 75%.
Related papers
- HAMSTER: Hierarchical Action Models For Open-World Robot Manipulation [54.03004125910057]
We show that hierarchical vision-language-action models can be more effective in utilizing off-domain data than standard monolithic VLA models.
We show that, with the hierarchical design, the high-level VLM can transfer across significant domain gaps between the off-domain finetuning data and real-robot testing scenarios.
arXiv Detail & Related papers (2025-02-08T07:50:22Z) - FAST: Efficient Action Tokenization for Vision-Language-Action Models [98.15494168962563]
We propose a new compression-based tokenization scheme for robot actions, based on the discrete cosine transform.
Based on FAST, we release FAST+, a universal robot action tokenizer, trained on 1M real robot action trajectories.
arXiv Detail & Related papers (2025-01-16T18:57:04Z) - TraceVLA: Visual Trace Prompting Enhances Spatial-Temporal Awareness for Generalist Robotic Policies [95.30717188630432]
We introduce visual trace prompting to facilitate VLA models' spatial-temporal awareness for action prediction.
We develop a new TraceVLA model by finetuning OpenVLA on our own collected dataset of 150K robot manipulation trajectories.
We present a compact VLA model based on 4B Phi-3-Vision, pretrained on the Open-X-Embodiment and finetuned on our dataset.
arXiv Detail & Related papers (2024-12-13T18:40:51Z) - CogACT: A Foundational Vision-Language-Action Model for Synergizing Cognition and Action in Robotic Manipulation [100.25567121604382]
Vision-Language-Action (VLA) models have improved robotic manipulation in terms of language-guided task execution and generalization to unseen scenarios.
We present a new advanced VLA architecture derived from Vision-Language-Models (VLM)
We show that our model not only significantly surpasses existing VLAs in task performance and but also exhibits remarkable adaptation to new robots and generalization to unseen objects and backgrounds.
arXiv Detail & Related papers (2024-11-29T12:06:03Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - One-Step Diffusion Policy: Fast Visuomotor Policies via Diffusion Distillation [80.71541671907426]
OneStep Diffusion Policy (OneDP) is a novel approach that distills knowledge from pre-trained diffusion policies into a single-step action generator.
OneDP significantly accelerates response times for robotic control tasks.
arXiv Detail & Related papers (2024-10-28T17:54:31Z) - A Dual Process VLA: Efficient Robotic Manipulation Leveraging VLM [0.26334346517416873]
Vision-Language-Action (VLA) models enable robots to perform complex tasks by integrating visual context with linguistic commands.
To overcome this, we propose Dual Process VLA (DP-VLA), a hierarchical framework inspired by dual-process theory.
Experimental results on the RoboCasa dataset demonstrate that DP-VLA achieves faster inference and higher task success rates.
arXiv Detail & Related papers (2024-10-21T00:36:02Z) - Learning Low-Frequency Motion Control for Robust and Dynamic Robot
Locomotion [10.838285018473725]
We demonstrate robust and dynamic locomotion with a learned motion controller executing at as low as 8 Hz on a real ANYmal C quadruped.
The robot is able to robustly and repeatably achieve a high heading velocity of 1.5 m/s, traverse uneven terrain, and resist unexpected external perturbations.
arXiv Detail & Related papers (2022-09-29T15:55:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.