Refining Counterfactual Explanations With Joint-Distribution-Informed Shapley Towards Actionable Minimality
- URL: http://arxiv.org/abs/2410.05419v1
- Date: Mon, 7 Oct 2024 18:31:19 GMT
- Title: Refining Counterfactual Explanations With Joint-Distribution-Informed Shapley Towards Actionable Minimality
- Authors: Lei You, Yijun Bian, Lele Cao,
- Abstract summary: Counterfactual explanations (CE) identify data points that closely resemble the observed data but produce different machine learning (ML) model outputs.
Existing CE methods often lack actionable efficiency because of unnecessary feature changes included within the explanations.
We propose a method that minimizes the required feature changes while maintaining the validity of CE.
- Score: 6.770853093478073
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Counterfactual explanations (CE) identify data points that closely resemble the observed data but produce different machine learning (ML) model outputs, offering critical insights into model decisions. Despite the diverse scenarios, goals and tasks to which they are tailored, existing CE methods often lack actionable efficiency because of unnecessary feature changes included within the explanations that are presented to users and stakeholders. We address this problem by proposing a method that minimizes the required feature changes while maintaining the validity of CE, without imposing restrictions on models or CE algorithms, whether instance- or group-based. The key innovation lies in computing a joint distribution between observed and counterfactual data and leveraging it to inform Shapley values for feature attributions (FA). We demonstrate that optimal transport (OT) effectively derives this distribution, especially when the alignment between observed and counterfactual data is unclear in used CE methods. Additionally, a counterintuitive finding is uncovered: it may be misleading to rely on an exact alignment defined by the CE generation mechanism in conducting FA. Our proposed method is validated on extensive experiments across multiple datasets, showcasing its effectiveness in refining CE towards greater actionable efficiency.
Related papers
- Verified Training for Counterfactual Explanation Robustness under Data
Shift [18.156341188646348]
Counterfactual explanations (CEs) enhance the interpretability of machine learning models by describing what changes to an input are necessary to change its prediction to a desired class.
Existing approaches generate CEs by focusing on a single, fixed model, and do not provide any formal guarantees on the CEs' future validity.
This paper introduces VeriTraCER, an approach that jointly trains a classifier and an explainer to explicitly consider the robustness of the generated CEs to small model shifts.
arXiv Detail & Related papers (2024-03-06T15:06:16Z) - Introducing User Feedback-based Counterfactual Explanations (UFCE) [49.1574468325115]
Counterfactual explanations (CEs) have emerged as a viable solution for generating comprehensible explanations in XAI.
UFCE allows for the inclusion of user constraints to determine the smallest modifications in the subset of actionable features.
UFCE outperforms two well-known CE methods in terms of textitproximity, textitsparsity, and textitfeasibility.
arXiv Detail & Related papers (2024-02-26T20:09:44Z) - Distributional Counterfactual Explanations With Optimal Transport [7.597676579494146]
Counterfactual explanations (CE) are the de facto method for providing insights into black-box decision-making models.
This paper proposes distributional counterfactual explanation (DCE), shifting focus to the distributional properties of observed and counterfactual data.
arXiv Detail & Related papers (2024-01-23T21:48:52Z) - Leveraging Diffusion Disentangled Representations to Mitigate Shortcuts
in Underspecified Visual Tasks [92.32670915472099]
We propose an ensemble diversification framework exploiting the generation of synthetic counterfactuals using Diffusion Probabilistic Models (DPMs)
We show that diffusion-guided diversification can lead models to avert attention from shortcut cues, achieving ensemble diversity performance comparable to previous methods requiring additional data collection.
arXiv Detail & Related papers (2023-10-03T17:37:52Z) - Counterfactual Explanation via Search in Gaussian Mixture Distributed
Latent Space [19.312306559210125]
Counterfactual Explanations (CEs) are an important tool in Algorithmic Recourse for addressing two questions.
guiding the user's interaction with AI systems by proposing easy-to-understand explanations is essential for the trustworthy adoption and long-term acceptance of AI systems.
We introduce a new method to generate CEs for a pre-trained binary classifier by first shaping the latent space of an autoencoder to be a mixture of Gaussian distributions.
arXiv Detail & Related papers (2023-07-25T10:21:26Z) - Finding Regions of Counterfactual Explanations via Robust Optimization [0.0]
A counterfactual explanation (CE) is a minimal perturbed data point for which the decision of the model changes.
Most of the existing methods can only provide one CE, which may not be achievable for the user.
We derive an iterative method to calculate robust CEs that remain valid even after the features are slightly perturbed.
arXiv Detail & Related papers (2023-01-26T14:06:26Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
We propose a novel framework of Model-Agnostic Counterfactual Explanation (MACE)
In our MACE approach, we propose a novel RL-based method for finding good counterfactual examples and a gradient-less descent method for improving proximity.
Experiments on public datasets validate the effectiveness with better validity, sparsity and proximity.
arXiv Detail & Related papers (2022-05-31T04:57:06Z) - Exploring the Trade-off between Plausibility, Change Intensity and
Adversarial Power in Counterfactual Explanations using Multi-objective
Optimization [73.89239820192894]
We argue that automated counterfactual generation should regard several aspects of the produced adversarial instances.
We present a novel framework for the generation of counterfactual examples.
arXiv Detail & Related papers (2022-05-20T15:02:53Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
We consider fairness in the integration component of data management.
We propose an approach to identify a sub-collection of features that ensure the fairness of the dataset.
arXiv Detail & Related papers (2020-06-10T20:20:10Z) - Estimating the Effects of Continuous-valued Interventions using
Generative Adversarial Networks [103.14809802212535]
We build on the generative adversarial networks (GANs) framework to address the problem of estimating the effect of continuous-valued interventions.
Our model, SCIGAN, is flexible and capable of simultaneously estimating counterfactual outcomes for several different continuous interventions.
To address the challenges presented by shifting to continuous interventions, we propose a novel architecture for our discriminator.
arXiv Detail & Related papers (2020-02-27T18:46:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.