Transformers learn variable-order Markov chains in-context
- URL: http://arxiv.org/abs/2410.05493v1
- Date: Mon, 7 Oct 2024 21:04:53 GMT
- Title: Transformers learn variable-order Markov chains in-context
- Authors: Ruida Zhou, Chao Tian, Suhas Diggavi,
- Abstract summary: We study the ICL of variable-order Markov chains (VOMC) by viewing language modeling as a form of data compression.
We show that two-layer transformers can match the ICL performance of transformers, and more interestingly, some of them can perform even better despite the much-reduced parameter sets.
- Score: 10.210508887119643
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Large language models have demonstrated impressive in-context learning (ICL) capability. However, it is still unclear how the underlying transformers accomplish it, especially in more complex scenarios. Toward this goal, several recent works studied how transformers learn fixed-order Markov chains (FOMC) in context, yet natural languages are more suitably modeled by variable-order Markov chains (VOMC), i.e., context trees (CTs). In this work, we study the ICL of VOMC by viewing language modeling as a form of data compression and focus on small alphabets and low-order VOMCs. This perspective allows us to leverage mature compression algorithms, such as context-tree weighting (CTW) and prediction by partial matching (PPM) algorithms as baselines, the former of which is Bayesian optimal for a class of CTW priors. We empirically observe a few phenomena: 1) Transformers can indeed learn to compress VOMC in-context, while PPM suffers significantly; 2) The performance of transformers is not very sensitive to the number of layers, and even a two-layer transformer can learn in-context quite well; and 3) Transformers trained and tested on non-CTW priors can significantly outperform the CTW algorithm. To explain these phenomena, we analyze the attention map of the transformers and extract two mechanisms, on which we provide two transformer constructions: 1) A construction with $D+2$ layers that can mimic the CTW algorithm accurately for CTs of maximum order $D$, 2) A 2-layer transformer that utilizes the feed-forward network for probability blending. One distinction from the FOMC setting is that a counting mechanism appears to play an important role. We implement these synthetic transformer layers and show that such hybrid transformers can match the ICL performance of transformers, and more interestingly, some of them can perform even better despite the much-reduced parameter sets.
Related papers
- Can Transformers Learn $n$-gram Language Models? [77.35809823602307]
We study transformers' ability to learn random $n$-gram LMs of two kinds.
We find that classic estimation techniques for $n$-gram LMs such as add-$lambda$ smoothing outperform transformers.
arXiv Detail & Related papers (2024-10-03T21:21:02Z) - Beyond Scaling Laws: Understanding Transformer Performance with Associative Memory [11.3128832831327]
Increasing the size of a Transformer model does not always lead to enhanced performance.
improved generalization ability occurs as the model memorizes the training samples.
We present a theoretical framework that sheds light on the memorization process and performance dynamics of transformer-based language models.
arXiv Detail & Related papers (2024-05-14T15:48:36Z) - Isomer: Isomerous Transformer for Zero-shot Video Object Segmentation [59.91357714415056]
We propose two Transformer variants: Context-Sharing Transformer (CST) and Semantic Gathering-Scattering Transformer (S GST)
CST learns the global-shared contextual information within image frames with a lightweight computation; S GST models the semantic correlation separately for the foreground and background.
Compared with the baseline that uses vanilla Transformers for multi-stage fusion, ours significantly increase the speed by 13 times and achieves new state-of-the-art ZVOS performance.
arXiv Detail & Related papers (2023-08-13T06:12:00Z) - Dual-path Adaptation from Image to Video Transformers [62.056751480114784]
We efficiently transfer the surpassing representation power of the vision foundation models, such as ViT and Swin, for video understanding with only a few trainable parameters.
We propose a novel DualPath adaptation separated into spatial and temporal adaptation paths, where a lightweight bottleneck adapter is employed in each transformer block.
arXiv Detail & Related papers (2023-03-17T09:37:07Z) - Towards Lightweight Transformer via Group-wise Transformation for
Vision-and-Language Tasks [126.33843752332139]
We introduce Group-wise Transformation towards a universal yet lightweight Transformer for vision-and-language tasks, termed as LW-Transformer.
We apply LW-Transformer to a set of Transformer-based networks, and quantitatively measure them on three vision-and-language tasks and six benchmark datasets.
Experimental results show that while saving a large number of parameters and computations, LW-Transformer achieves very competitive performance against the original Transformer networks for vision-and-language tasks.
arXiv Detail & Related papers (2022-04-16T11:30:26Z) - Transformer with a Mixture of Gaussian Keys [31.91701434633319]
Multi-head attention is a driving force behind state-of-the-art transformers.
Transformer-MGK replaces redundant heads in transformers with a mixture of keys at each head.
Compared to its conventional transformer counterpart, Transformer-MGK accelerates training and inference, has fewer parameters, and requires less FLOPs to compute.
arXiv Detail & Related papers (2021-10-16T23:43:24Z) - Stable, Fast and Accurate: Kernelized Attention with Relative Positional
Encoding [63.539333383965726]
We propose a novel way to accelerate attention calculation for Transformers with relative positional encoding (RPE)
Based upon the observation that relative positional encoding forms a Toeplitz matrix, we mathematically show that kernelized attention with RPE can be calculated efficiently using Fast Fourier Transform (FFT)
arXiv Detail & Related papers (2021-06-23T17:51:26Z) - Glance-and-Gaze Vision Transformer [13.77016463781053]
We propose a new vision Transformer, named Glance-and-Gaze Transformer (GG-Transformer)
It is motivated by the Glance and Gaze behavior of human beings when recognizing objects in natural scenes.
We empirically demonstrate our method achieves consistently superior performance over previous state-of-the-art Transformers.
arXiv Detail & Related papers (2021-06-04T06:13:47Z) - Scalable Transformers for Neural Machine Translation [86.4530299266897]
Transformer has been widely adopted in Neural Machine Translation (NMT) because of its large capacity and parallel training of sequence generation.
We propose a novel scalable Transformers, which naturally contains sub-Transformers of different scales and have shared parameters.
A three-stage training scheme is proposed to tackle the difficulty of training the scalable Transformers.
arXiv Detail & Related papers (2021-06-04T04:04:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.