Swift Sampler: Efficient Learning of Sampler by 10 Parameters
- URL: http://arxiv.org/abs/2410.05578v1
- Date: Tue, 8 Oct 2024 00:26:29 GMT
- Title: Swift Sampler: Efficient Learning of Sampler by 10 Parameters
- Authors: Jiawei Yao, Chuming Li, Canran Xiao,
- Abstract summary: An effective data sampler assigns proper sampling probability for training data.
textbfSS can be applied on large-scale data sets with high efficiency.
- Score: 5.595723519561982
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data selection is essential for training deep learning models. An effective data sampler assigns proper sampling probability for training data and helps the model converge to a good local minimum with high performance. Previous studies in data sampling are mainly based on heuristic rules or learning through a huge amount of time-consuming trials. In this paper, we propose an automatic \textbf{swift sampler} search algorithm, \textbf{SS}, to explore automatically learning effective samplers efficiently. In particular, \textbf{SS} utilizes a novel formulation to map a sampler to a low dimension of hyper-parameters and uses an approximated local minimum to quickly examine the quality of a sampler. Benefiting from its low computational expense, \textbf{SS} can be applied on large-scale data sets with high efficiency. Comprehensive experiments on various tasks demonstrate that \textbf{SS} powered sampling can achieve obvious improvements (e.g., 1.5\% on ImageNet) and transfer among different neural networks. Project page: https://github.com/Alexander-Yao/Swift-Sampler.
Related papers
- Adaptive teachers for amortized samplers [76.88721198565861]
Amortized inference is the task of training a parametric model, such as a neural network, to approximate a distribution with a given unnormalized density where exact sampling is intractable.
Off-policy RL training facilitates the discovery of diverse, high-reward candidates, but existing methods still face challenges in efficient exploration.
We propose an adaptive training distribution (the Teacher) to guide the training of the primary amortized sampler (the Student) by prioritizing high-loss regions.
arXiv Detail & Related papers (2024-10-02T11:33:13Z) - Target-Aware Language Modeling via Granular Data Sampling [25.957424920194914]
Language model pretraining generally targets a broad range of use cases and incorporates data from diverse sources.
A cost-effective and straightforward approach is sampling with low-dimensional data features.
We show that pretrained models perform on par with the full RefinedWeb data and outperform randomly selected samples for model sizes ranging from 125M to 1.5B.
arXiv Detail & Related papers (2024-09-23T04:52:17Z) - Dataset Quantization with Active Learning based Adaptive Sampling [11.157462442942775]
We show that maintaining performance is feasible even with uneven sample distributions.
We propose a novel active learning based adaptive sampling strategy to optimize the sample selection.
Our approach outperforms the state-of-the-art dataset compression methods.
arXiv Detail & Related papers (2024-07-09T23:09:18Z) - Towards Free Data Selection with General-Purpose Models [71.92151210413374]
A desirable data selection algorithm can efficiently choose the most informative samples to maximize the utility of limited annotation budgets.
Current approaches, represented by active learning methods, typically follow a cumbersome pipeline that iterates the time-consuming model training and batch data selection repeatedly.
FreeSel bypasses the heavy batch selection process, achieving a significant improvement in efficiency and being 530x faster than existing active learning methods.
arXiv Detail & Related papers (2023-09-29T15:50:14Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - Towards Automated Imbalanced Learning with Deep Hierarchical
Reinforcement Learning [57.163525407022966]
Imbalanced learning is a fundamental challenge in data mining, where there is a disproportionate ratio of training samples in each class.
Over-sampling is an effective technique to tackle imbalanced learning through generating synthetic samples for the minority class.
We propose AutoSMOTE, an automated over-sampling algorithm that can jointly optimize different levels of decisions.
arXiv Detail & Related papers (2022-08-26T04:28:01Z) - Pareto Optimization for Active Learning under Out-of-Distribution Data
Scenarios [79.02009938011447]
We propose a sampling scheme, which selects optimal subsets of unlabeled samples with fixed batch size from the unlabeled data pool.
Experimental results show its effectiveness on both classical Machine Learning (ML) and Deep Learning (DL) tasks.
arXiv Detail & Related papers (2022-07-04T04:11:44Z) - ScatterSample: Diversified Label Sampling for Data Efficient Graph
Neural Network Learning [22.278779277115234]
In some applications where graph neural network (GNN) training is expensive, labeling new instances is expensive.
We develop a data-efficient active sampling framework, ScatterSample, to train GNNs under an active learning setting.
Our experiments on five datasets show that ScatterSample significantly outperforms the other GNN active learning baselines.
arXiv Detail & Related papers (2022-06-09T04:05:02Z) - AutoSampling: Search for Effective Data Sampling Schedules [118.20014773014671]
We propose an AutoSampling method to automatically learn sampling schedules for model training.
We apply our method to a variety of image classification tasks illustrating the effectiveness of the proposed method.
arXiv Detail & Related papers (2021-05-28T09:39:41Z) - Efficient Deep Representation Learning by Adaptive Latent Space Sampling [16.320898678521843]
Supervised deep learning requires a large amount of training samples with annotations, which are expensive and time-consuming to obtain.
We propose a novel training framework which adaptively selects informative samples that are fed to the training process.
arXiv Detail & Related papers (2020-03-19T22:17:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.