Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
- URL: http://arxiv.org/abs/2410.05602v1
- Date: Tue, 8 Oct 2024 01:27:46 GMT
- Title: Amortized Control of Continuous State Space Feynman-Kac Model for Irregular Time Series
- Authors: Byoungwoo Park, Hyungi Lee, Juho Lee,
- Abstract summary: Many real-world datasets, such as healthcare, climate, and economics, are often collected as irregular time series.
We propose the Amortized Control of continuous State Space Model (ACSSM) for continuous dynamical modeling of time series.
- Score: 14.400596021890863
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many real-world datasets, such as healthcare, climate, and economics, are often collected as irregular time series, which poses challenges for accurate modeling. In this paper, we propose the Amortized Control of continuous State Space Model (ACSSM) for continuous dynamical modeling of time series for irregular and discrete observations. We first present a multi-marginal Doob's $h$-transform to construct a continuous dynamical system conditioned on these irregular observations. Following this, we introduce a variational inference algorithm with a tight evidence lower bound (ELBO), leveraging stochastic optimal control (SOC) theory to approximate the intractable Doob's $h$-transform and simulate the conditioned dynamics. To improve efficiency and scalability during both training and inference, ACSSM employs amortized inference to decouple representation learning from the latent dynamics. Additionally, it incorporates a simulation-free latent dynamics framework and a transformer-based data assimilation scheme, facilitating parallel inference of the latent states and ELBO computation. Through empirical evaluations across a variety of real-world datasets, ACSSM demonstrates superior performance in tasks such as classification, regression, interpolation, and extrapolation, while maintaining computational efficiency.
Related papers
- Learning Car-Following Behaviors Using Bayesian Matrix Normal Mixture Regression [17.828808886958736]
Car-following (CF) behaviors are crucial for microscopic traffic simulation.
Many data-driven methods, despite their robustness, operate as "black boxes" with limited interpretability.
This work introduces a Bayesian Matrix Normal Mixture Regression (MNMR) model that simultaneously captures feature correlations and temporal dynamics inherent in CF behaviors.
arXiv Detail & Related papers (2024-04-24T17:55:47Z) - A Poisson-Gamma Dynamic Factor Model with Time-Varying Transition Dynamics [51.147876395589925]
A non-stationary PGDS is proposed to allow the underlying transition matrices to evolve over time.
A fully-conjugate and efficient Gibbs sampler is developed to perform posterior simulation.
Experiments show that, in comparison with related models, the proposed non-stationary PGDS achieves improved predictive performance.
arXiv Detail & Related papers (2024-02-26T04:39:01Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Neural Continuous-Discrete State Space Models for Irregularly-Sampled
Time Series [18.885471782270375]
NCDSSM employs auxiliary variables to disentangle recognition from dynamics, thus requiring amortized inference only for the auxiliary variables.
We propose three flexible parameterizations of the latent dynamics and an efficient training objective that marginalizes the dynamic states during inference.
Empirical results on multiple benchmark datasets show improved imputation and forecasting performance of NCDSSM over existing models.
arXiv Detail & Related papers (2023-01-26T18:45:04Z) - Deep Explicit Duration Switching Models for Time Series [84.33678003781908]
We propose a flexible model that is capable of identifying both state- and time-dependent switching dynamics.
State-dependent switching is enabled by a recurrent state-to-switch connection.
An explicit duration count variable is used to improve the time-dependent switching behavior.
arXiv Detail & Related papers (2021-10-26T17:35:21Z) - Value Iteration in Continuous Actions, States and Time [99.00362538261972]
We propose a continuous fitted value iteration (cFVI) algorithm for continuous states and actions.
The optimal policy can be derived for non-linear control-affine dynamics.
Videos of the physical system are available at urlhttps://sites.google.com/view/value-iteration.
arXiv Detail & Related papers (2021-05-10T21:40:56Z) - Autoregressive Dynamics Models for Offline Policy Evaluation and
Optimization [60.73540999409032]
We show that expressive autoregressive dynamics models generate different dimensions of the next state and reward sequentially conditioned on previous dimensions.
We also show that autoregressive dynamics models are useful for offline policy optimization by serving as a way to enrich the replay buffer.
arXiv Detail & Related papers (2021-04-28T16:48:44Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.