ViBiDSampler: Enhancing Video Interpolation Using Bidirectional Diffusion Sampler
- URL: http://arxiv.org/abs/2410.05651v1
- Date: Tue, 8 Oct 2024 03:01:54 GMT
- Title: ViBiDSampler: Enhancing Video Interpolation Using Bidirectional Diffusion Sampler
- Authors: Serin Yang, Taesung Kwon, Jong Chul Ye,
- Abstract summary: Current image-to-video diffusion models, while powerful in generating videos from a single frame, need adaptation for two-frame conditioned generation.
We introduce a novel, bidirectional sampling strategy to address these off-manifold issues without requiring extensive re-noising or fine-tuning.
Our method employs sequential sampling along both forward and backward paths, conditioned on the start and end frames, respectively, ensuring more coherent and on-manifold generation of intermediate frames.
- Score: 53.98558445900626
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent progress in large-scale text-to-video (T2V) and image-to-video (I2V) diffusion models has greatly enhanced video generation, especially in terms of keyframe interpolation. However, current image-to-video diffusion models, while powerful in generating videos from a single conditioning frame, need adaptation for two-frame (start & end) conditioned generation, which is essential for effective bounded interpolation. Unfortunately, existing approaches that fuse temporally forward and backward paths in parallel often suffer from off-manifold issues, leading to artifacts or requiring multiple iterative re-noising steps. In this work, we introduce a novel, bidirectional sampling strategy to address these off-manifold issues without requiring extensive re-noising or fine-tuning. Our method employs sequential sampling along both forward and backward paths, conditioned on the start and end frames, respectively, ensuring more coherent and on-manifold generation of intermediate frames. Additionally, we incorporate advanced guidance techniques, CFG++ and DDS, to further enhance the interpolation process. By integrating these, our method achieves state-of-the-art performance, efficiently generating high-quality, smooth videos between keyframes. On a single 3090 GPU, our method can interpolate 25 frames at 1024 x 576 resolution in just 195 seconds, establishing it as a leading solution for keyframe interpolation.
Related papers
- Generative Inbetweening: Adapting Image-to-Video Models for Keyframe Interpolation [60.27691946892796]
We present a method for generating video sequences with coherent motion between a pair of input key frames.
Our experiments show that our method outperforms both existing diffusion-based methods and traditional frame techniques.
arXiv Detail & Related papers (2024-08-27T17:57:14Z) - Hierarchical Patch Diffusion Models for High-Resolution Video Generation [50.42746357450949]
We develop deep context fusion, which propagates context information from low-scale to high-scale patches in a hierarchical manner.
We also propose adaptive computation, which allocates more network capacity and computation towards coarse image details.
The resulting model sets a new state-of-the-art FVD score of 66.32 and Inception Score of 87.68 in class-conditional video generation.
arXiv Detail & Related papers (2024-06-12T01:12:53Z) - FusionFrames: Efficient Architectural Aspects for Text-to-Video
Generation Pipeline [4.295130967329365]
This paper presents a new two-stage latent diffusion text-to-video generation architecture based on the text-to-image diffusion model.
The design of our model significantly reduces computational costs compared to other masked frame approaches.
We evaluate different configurations of MoVQ-based video decoding scheme to improve consistency and achieve higher PSNR, SSIM, MSE, and LPIPS scores.
arXiv Detail & Related papers (2023-11-22T00:26:15Z) - Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation [93.18163456287164]
This paper proposes a novel text-guided video-to-video translation framework to adapt image models to videos.
Our framework achieves global style and local texture temporal consistency at a low cost.
arXiv Detail & Related papers (2023-06-13T17:52:23Z) - TTVFI: Learning Trajectory-Aware Transformer for Video Frame
Interpolation [50.49396123016185]
Video frame (VFI) aims to synthesize an intermediate frame between two consecutive frames.
We propose a novel Trajectory-aware Transformer for Video Frame Interpolation (TTVFI)
Our method outperforms other state-of-the-art methods in four widely-used VFI benchmarks.
arXiv Detail & Related papers (2022-07-19T03:37:49Z) - ALANET: Adaptive Latent Attention Network forJoint Video Deblurring and
Interpolation [38.52446103418748]
We introduce a novel architecture, Adaptive Latent Attention Network (ALANET), which synthesizes sharp high frame-rate videos.
We employ combination of self-attention and cross-attention module between consecutive frames in the latent space to generate optimized representation for each frame.
Our method performs favorably against various state-of-the-art approaches, even though we tackle a much more difficult problem.
arXiv Detail & Related papers (2020-08-31T21:11:53Z) - All at Once: Temporally Adaptive Multi-Frame Interpolation with Advanced
Motion Modeling [52.425236515695914]
State-of-the-art methods are iterative solutions interpolating one frame at the time.
This work introduces a true multi-frame interpolator.
It utilizes a pyramidal style network in the temporal domain to complete the multi-frame task in one-shot.
arXiv Detail & Related papers (2020-07-23T02:34:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.