Log-concave Sampling from a Convex Body with a Barrier: a Robust and Unified Dikin Walk
- URL: http://arxiv.org/abs/2410.05700v2
- Date: Tue, 12 Nov 2024 19:11:52 GMT
- Title: Log-concave Sampling from a Convex Body with a Barrier: a Robust and Unified Dikin Walk
- Authors: Yuzhou Gu, Nikki Lijing Kuang, Yi-An Ma, Zhao Song, Lichen Zhang,
- Abstract summary: We consider the problem of sampling from a $d$-dimensional log-concave distribution $pi(theta) propto exp(-f(theta))$ for $L$-Lipschitz $f$.
We propose a emphrobust sampling framework that computes spectral approximations to the Hessian of the barrier functions in each iteration.
- Score: 12.842909157175582
- License:
- Abstract: We consider the problem of sampling from a $d$-dimensional log-concave distribution $\pi(\theta) \propto \exp(-f(\theta))$ for $L$-Lipschitz $f$, constrained to a convex body with an efficiently computable self-concordant barrier function, contained in a ball of radius $R$ with a $w$-warm start. We propose a \emph{robust} sampling framework that computes spectral approximations to the Hessian of the barrier functions in each iteration. We prove that for polytopes that are described by $n$ hyperplanes, sampling with the Lee-Sidford barrier function mixes within $\widetilde O((d^2+dL^2R^2)\log(w/\delta))$ steps with a per step cost of $\widetilde O(nd^{\omega-1})$, where $\omega\approx 2.37$ is the fast matrix multiplication exponent. Compared to the prior work of Mangoubi and Vishnoi, our approach gives faster mixing time as we are able to design a generalized soft-threshold Dikin walk beyond log-barrier. We further extend our result to show how to sample from a $d$-dimensional spectrahedron, the constrained set of a semidefinite program, specified by the set $\{x\in \mathbb{R}^d: \sum_{i=1}^d x_i A_i \succeq C \}$ where $A_1,\ldots,A_d, C$ are $n\times n$ real symmetric matrices. We design a walk that mixes in $\widetilde O((nd+dL^2R^2)\log(w/\delta))$ steps with a per iteration cost of $\widetilde O(n^\omega+n^2d^{3\omega-5})$. We improve the mixing time bound of prior best Dikin walk due to Narayanan and Rakhlin that mixes in $\widetilde O((n^2d^3+n^2dL^2R^2)\log(w/\delta))$ steps.
Related papers
- Measuring quantum relative entropy with finite-size effect [53.64687146666141]
We study the estimation of relative entropy $D(rho|sigma)$ when $sigma$ is known.
Our estimator attains the Cram'er-Rao type bound when the dimension $d$ is fixed.
arXiv Detail & Related papers (2024-06-25T06:07:20Z) - Near-Optimal Distributed Minimax Optimization under the Second-Order Similarity [22.615156512223763]
We propose variance- optimistic sliding (SVOGS) method, which takes the advantage of the finite-sum structure in the objective.
We prove $mathcal O(delta D2/varepsilon)$, communication complexity of $mathcal O(n+sqrtndelta D2/varepsilon)$, and local calls of $tildemathcal O(n+sqrtndelta+L)D2/varepsilon)$.
arXiv Detail & Related papers (2024-05-25T08:34:49Z) - Solving Dense Linear Systems Faster Than via Preconditioning [1.8854491183340518]
We show that our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
In particular, our algorithm has an $tilde O(n2)$ when $k=O(n0.729)$.
Our main algorithm can be viewed as a randomized block coordinate descent method.
arXiv Detail & Related papers (2023-12-14T12:53:34Z) - Faster Sampling from Log-Concave Distributions over Polytopes via a
Soft-Threshold Dikin Walk [28.431572772564518]
We consider the problem of sampling from a $d$-dimensional log-concave distribution $pi(theta) propto e-f(theta)$ constrained to a polytope $K$ defined by $m$ inequalities.
Our main result is a "soft-warm'' variant of the Dikin walk Markov chain that requires at most $O((md + d L2 R2) times MDomega-1) log(fracwdelta)$ arithmetic operations to sample from $pi$
arXiv Detail & Related papers (2022-06-19T11:33:07Z) - Learning a Single Neuron with Adversarial Label Noise via Gradient
Descent [50.659479930171585]
We study a function of the form $mathbfxmapstosigma(mathbfwcdotmathbfx)$ for monotone activations.
The goal of the learner is to output a hypothesis vector $mathbfw$ that $F(mathbbw)=C, epsilon$ with high probability.
arXiv Detail & Related papers (2022-06-17T17:55:43Z) - Private Convex Optimization via Exponential Mechanism [16.867534746193833]
We show that modifying the exponential mechanism by adding an $ellcave2$ regularizer to $F(x)$ recovers both the known optimal empirical risk and population loss under $(epsilon,delta)$-DP.
We also show how to implement this mechanism using $widetildeO(n min(d, n)) queries to $f_i(x) for the DP-SCO where $n$ is the number of samples/optimal and $d is the ambient dimension.
arXiv Detail & Related papers (2022-03-01T06:51:03Z) - Threshold Phenomena in Learning Halfspaces with Massart Noise [56.01192577666607]
We study the problem of PAC learning halfspaces on $mathbbRd$ with Massart noise under Gaussian marginals.
Our results qualitatively characterize the complexity of learning halfspaces in the Massart model.
arXiv Detail & Related papers (2021-08-19T16:16:48Z) - Non-Parametric Estimation of Manifolds from Noisy Data [1.0152838128195467]
We consider the problem of estimating a $d$ dimensional sub-manifold of $mathbbRD$ from a finite set of noisy samples.
We show that the estimation yields rates of convergence of $n-frack2k + d$ for the point estimation and $n-frack-12k + d$ for the estimation of tangent space.
arXiv Detail & Related papers (2021-05-11T02:29:33Z) - Optimal Mean Estimation without a Variance [103.26777953032537]
We study the problem of heavy-tailed mean estimation in settings where the variance of the data-generating distribution does not exist.
We design an estimator which attains the smallest possible confidence interval as a function of $n,d,delta$.
arXiv Detail & Related papers (2020-11-24T22:39:21Z) - Linear Time Sinkhorn Divergences using Positive Features [51.50788603386766]
Solving optimal transport with an entropic regularization requires computing a $ntimes n$ kernel matrix that is repeatedly applied to a vector.
We propose to use instead ground costs of the form $c(x,y)=-logdotpvarphi(x)varphi(y)$ where $varphi$ is a map from the ground space onto the positive orthant $RRr_+$, with $rll n$.
arXiv Detail & Related papers (2020-06-12T10:21:40Z) - On the Complexity of Minimizing Convex Finite Sums Without Using the
Indices of the Individual Functions [62.01594253618911]
We exploit the finite noise structure of finite sums to derive a matching $O(n2)$-upper bound under the global oracle model.
Following a similar approach, we propose a novel adaptation of SVRG which is both emphcompatible with oracles, and achieves complexity bounds of $tildeO(n2+nsqrtL/mu)log (1/epsilon)$ and $O(nsqrtL/epsilon)$, for $mu>0$ and $mu=0$
arXiv Detail & Related papers (2020-02-09T03:39:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.