Less is more: Embracing sparsity and interpolation with Esiformer for time series forecasting
- URL: http://arxiv.org/abs/2410.05726v1
- Date: Tue, 8 Oct 2024 06:45:47 GMT
- Title: Less is more: Embracing sparsity and interpolation with Esiformer for time series forecasting
- Authors: Yangyang Guo, Yanjun Zhao, Sizhe Dang, Tian Zhou, Liang Sun, Yi Qian,
- Abstract summary: Time series data generated from real-world applications always exhibits high variance and lots of noise.
We propose the Esiformer, which apply on the original data, decreasing the overall variance of the data and alleviating the influence of noise.
Our method outperforms leading model PatchTST, reducing MSE by 6.5% and MAE by 5.8%.
- Score: 19.8447763392479
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Time series forecasting has played a significant role in many practical fields. But time series data generated from real-world applications always exhibits high variance and lots of noise, which makes it difficult to capture the inherent periodic patterns of the data, hurting the prediction accuracy significantly. To address this issue, we propose the Esiformer, which apply interpolation on the original data, decreasing the overall variance of the data and alleviating the influence of noise. What's more, we enhanced the vanilla transformer with a robust Sparse FFN. It can enhance the representation ability of the model effectively, and maintain the excellent robustness, avoiding the risk of overfitting compared with the vanilla implementation. Through evaluations on challenging real-world datasets, our method outperforms leading model PatchTST, reducing MSE by 6.5% and MAE by 5.8% in multivariate time series forecasting. Code is available at: https://github.com/yyg1282142265/Esiformer/tree/main.
Related papers
- Beyond Data Scarcity: A Frequency-Driven Framework for Zero-Shot Forecasting [15.431513584239047]
Time series forecasting is critical in numerous real-world applications.
Traditional forecasting techniques struggle when data is scarce or not available at all.
Recent advancements often leverage large-scale foundation models for such tasks.
arXiv Detail & Related papers (2024-11-24T07:44:39Z) - Learning Graph Structures and Uncertainty for Accurate and Calibrated Time-series Forecasting [65.40983982856056]
We introduce STOIC, that leverages correlations between time-series to learn underlying structure between time-series and to provide well-calibrated and accurate forecasts.
Over a wide-range of benchmark datasets STOIC provides 16% more accurate and better-calibrated forecasts.
arXiv Detail & Related papers (2024-07-02T20:14:32Z) - TimeSieve: Extracting Temporal Dynamics through Information Bottlenecks [31.10683149519954]
We propose an innovative time series forecasting model TimeSieve.
Our approach employs wavelet transforms to preprocess time series data, effectively capturing multi-scale features.
Our results validate the effectiveness of our approach in addressing the key challenges in time series forecasting.
arXiv Detail & Related papers (2024-06-07T15:58:12Z) - Attention as Robust Representation for Time Series Forecasting [23.292260325891032]
Time series forecasting is essential for many practical applications.
Transformers' key feature, the attention mechanism, dynamically fusing embeddings to enhance data representation, often relegating attention weights to a byproduct role.
Our approach elevates attention weights as the primary representation for time series, capitalizing on the temporal relationships among data points to improve forecasting accuracy.
arXiv Detail & Related papers (2024-02-08T03:00:50Z) - Transformer Multivariate Forecasting: Less is More? [42.558736426375056]
The paper focuses on reducing redundant information to elevate forecasting accuracy while optimizing runtime efficiency.
The framework is evaluated by five state-of-the-art (SOTA) models and four diverse real-world datasets.
From the model perspective, one of the PCA-enhanced models: PCA+Crossformer, reduces mean square errors (MSE) by 33.3% and decreases runtime by 49.2% on average.
arXiv Detail & Related papers (2023-12-30T13:44:23Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
estimation of time-varying quantities is a fundamental component of decision making in fields such as healthcare and finance.
We propose a versatile method that estimates joint distributions using an attention-based decoder.
We show that our model produces state-of-the-art predictions on several real-world datasets.
arXiv Detail & Related papers (2022-02-07T21:37:29Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.