GlucoBench: Curated List of Continuous Glucose Monitoring Datasets with Prediction Benchmarks
- URL: http://arxiv.org/abs/2410.05780v1
- Date: Tue, 8 Oct 2024 08:01:09 GMT
- Title: GlucoBench: Curated List of Continuous Glucose Monitoring Datasets with Prediction Benchmarks
- Authors: Renat Sergazinov, Elizabeth Chun, Valeriya Rogovchenko, Nathaniel Fernandes, Nicholas Kasman, Irina Gaynanova,
- Abstract summary: Continuous glucose monitors (CGM) are small medical devices that measure blood glucose levels at regular intervals.
Forecasting of glucose trajectories based on CGM data holds the potential to substantially improve diabetes management.
- Score: 0.12564343689544843
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rising rates of diabetes necessitate innovative methods for its management. Continuous glucose monitors (CGM) are small medical devices that measure blood glucose levels at regular intervals providing insights into daily patterns of glucose variation. Forecasting of glucose trajectories based on CGM data holds the potential to substantially improve diabetes management, by both refining artificial pancreas systems and enabling individuals to make adjustments based on predictions to maintain optimal glycemic range.Despite numerous methods proposed for CGM-based glucose trajectory prediction, these methods are typically evaluated on small, private datasets, impeding reproducibility, further research, and practical adoption. The absence of standardized prediction tasks and systematic comparisons between methods has led to uncoordinated research efforts, obstructing the identification of optimal tools for tackling specific challenges. As a result, only a limited number of prediction methods have been implemented in clinical practice. To address these challenges, we present a comprehensive resource that provides (1) a consolidated repository of curated publicly available CGM datasets to foster reproducibility and accessibility; (2) a standardized task list to unify research objectives and facilitate coordinated efforts; (3) a set of benchmark models with established baseline performance, enabling the research community to objectively gauge new methods' efficacy; and (4) a detailed analysis of performance-influencing factors for model development. We anticipate these resources to propel collaborative research endeavors in the critical domain of CGM-based glucose predictions. {Our code is available online at github.com/IrinaStatsLab/GlucoBench.
Related papers
- AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset [8.063401183752347]
Diabetes is a chronic metabolic disorder characterized by persistently high blood glucose levels (BGLs)
Recent deep learning models show promise in improving BGL prediction.
We propose AttenGluco, a multimodal Transformer-based framework for long-term blood glucose prediction.
arXiv Detail & Related papers (2025-02-14T05:07:38Z) - Continually Evolved Multimodal Foundation Models for Cancer Prognosis [50.43145292874533]
Cancer prognosis is a critical task that involves predicting patient outcomes and survival rates.
Previous studies have integrated diverse data modalities, such as clinical notes, medical images, and genomic data, leveraging their complementary information.
Existing approaches face two major limitations. First, they struggle to incorporate newly arrived data with varying distributions into training, such as patient records from different hospitals.
Second, most multimodal integration methods rely on simplistic concatenation or task-specific pipelines, which fail to capture the complex interdependencies across modalities.
arXiv Detail & Related papers (2025-01-30T06:49:57Z) - Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting [6.466206145151128]
GlucoNet is an AI-powered sensor system for continuously monitoring behavioral and physiological health.
We propose a decomposition-based transformer model that incorporates patients' behavioral and physiological data.
G GlucoNet achieves a 60% improvement in RMSE and a 21% reduction in the number of parameters, using data obtained involving 12 participants with T1-Diabetes.
arXiv Detail & Related papers (2024-11-16T05:09:20Z) - Reasoning-Enhanced Healthcare Predictions with Knowledge Graph Community Retrieval [61.70489848327436]
KARE is a novel framework that integrates knowledge graph (KG) community-level retrieval with large language models (LLMs) reasoning.
Extensive experiments demonstrate that KARE outperforms leading models by up to 10.8-15.0% on MIMIC-III and 12.6-12.7% on MIMIC-IV for mortality and readmission predictions.
arXiv Detail & Related papers (2024-10-06T18:46:28Z) - From Glucose Patterns to Health Outcomes: A Generalizable Foundation Model for Continuous Glucose Monitor Data Analysis [47.23780364438969]
We present GluFormer, a generative foundation model for CGM data that learns nuanced glycemic patterns and translates them into predictive representations of metabolic health.
GluFormer generalizes to 19 external cohorts spanning different ethnicities and ages, 5 countries, 8 CGM devices, and diverse pathophysiological states.
In a longitudinal study of 580 adults with CGM data and 12-year follow-up, GluFormer identifies individuals at elevated risk of developing diabetes more effectively than blood HbA1C%.
arXiv Detail & Related papers (2024-08-20T13:19:06Z) - Toward Short-Term Glucose Prediction Solely Based on CGM Time Series [4.7066018521459725]
TimeGlu is an end-to-end pipeline for short-term glucose prediction based on CGM time series data.
It achieves state-of-the-art performance without the need for additional personal data from patients.
arXiv Detail & Related papers (2024-04-18T06:02:12Z) - GARNN: An Interpretable Graph Attentive Recurrent Neural Network for
Predicting Blood Glucose Levels via Multivariate Time Series [12.618792803757714]
We propose interpretable graph attentive neural networks (GARNNs) to model multi-modal data.
GARNNs achieve the best prediction accuracy and provide high-quality temporal interpretability.
These findings underline the potential of GARNN as a robust tool for improving diabetes care.
arXiv Detail & Related papers (2024-02-26T01:18:53Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Machine Learning based prediction of Glucose Levels in Type 1 Diabetes
Patients with the use of Continuous Glucose Monitoring Data [0.0]
Continuous Glucose Monitoring (CGM) devices offer detailed, non-intrusive and real time insights into a patient's blood glucose concentrations.
Leveraging advanced Machine Learning (ML) Models as methods of prediction of future glucose levels, gives rise to substantial quality of life improvements.
arXiv Detail & Related papers (2023-02-24T19:10:40Z) - SSM-DTA: Breaking the Barriers of Data Scarcity in Drug-Target Affinity
Prediction [127.43571146741984]
Drug-Target Affinity (DTA) is of vital importance in early-stage drug discovery.
wet experiments remain the most reliable method, but they are time-consuming and resource-intensive.
Existing methods have primarily focused on developing techniques based on the available DTA data, without adequately addressing the data scarcity issue.
We present the SSM-DTA framework, which incorporates three simple yet highly effective strategies.
arXiv Detail & Related papers (2022-06-20T14:53:25Z) - Short Term Blood Glucose Prediction based on Continuous Glucose
Monitoring Data [53.01543207478818]
This study explores the use of Continuous Glucose Monitoring (CGM) data as input for digital decision support tools.
We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction.
arXiv Detail & Related papers (2020-02-06T16:39:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.