Gradual Learning: Optimizing Fine-Tuning with Partially Mastered Knowledge in Large Language Models
- URL: http://arxiv.org/abs/2410.05802v1
- Date: Tue, 8 Oct 2024 08:35:16 GMT
- Title: Gradual Learning: Optimizing Fine-Tuning with Partially Mastered Knowledge in Large Language Models
- Authors: Bozhou Li, Hao Liang, Yang Li, Fangcheng Fu, Hongzhi Yin, Conghui He, Wentao Zhang,
- Abstract summary: Large language models (LLMs) acquire vast amounts of knowledge from extensive text corpora during the pretraining phase.
In later stages such as fine-tuning and inference, the model may encounter knowledge not covered in the initial training.
We propose a two-stage fine-tuning strategy to improve the model's overall test accuracy and knowledge retention.
- Score: 51.20499954955646
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: During the pretraining phase, large language models (LLMs) acquire vast amounts of knowledge from extensive text corpora. Nevertheless, in later stages such as fine-tuning and inference, the model may encounter knowledge not covered in the initial training, which can lead to hallucinations and degraded performance. This issue has a profound impact on the model's capabilities, as it will inevitably face out-of-scope knowledge after pretraining. Furthermore, fine-tuning is often required to adapt LLMs to domain-specific tasks. However, this phenomenon limits the model's ability to learn and integrate new information during fine-tuning. The effectiveness of fine-tuning largely depends on the type of knowledge involved. Existing research suggests that fine-tuning the model on partially mastered knowledge-for instance, question-answer pairs where the model has a chance of providing correct responses under non-greedy decoding-can enable the model to acquire new knowledge while mitigating hallucination. Notably, this approach can still lead to the forgetting of fully mastered knowledge, constraining the fine-tuning dataset to a narrower range and limiting the model's overall potential for improvement. Given the model's intrinsic reasoning abilities and the interconnectedness of different knowledge areas, it is likely that as the model's capacity to utilize existing knowledge improves during fine-tuning, previously unmastered knowledge may become more understandable. To explore this hypothesis, we conducted experiments and, based on the results, proposed a two-stage fine-tuning strategy. This approach not only improves the model's overall test accuracy and knowledge retention but also preserves its accuracy on previously mastered content. When fine-tuning on the WikiQA dataset, our method increases the amount of knowledge acquired by the model in this stage by 24%.
Related papers
- UNLEARN Efficient Removal of Knowledge in Large Language Models [1.9797215742507548]
This paper proposes a novel method to achieve this objective called UNLEARN.
The approach builds upon subspace methods to identify and specifically target the removal of knowledge without adversely affecting other knowledge in the LLM.
Results demonstrate 96% of targeted knowledge can be forgotten while maintaining performance on other knowledge within 2.5% of the original model.
arXiv Detail & Related papers (2024-08-08T00:53:31Z) - Does Fine-Tuning LLMs on New Knowledge Encourage Hallucinations? [33.702498916775426]
We study the impact of new knowledge on the capability of the fine-tuned model to utilize its pre-existing knowledge.
We demonstrate that large language models struggle to acquire new factual knowledge through fine-tuning.
As the examples with new knowledge are eventually learned, they linearly increase the model's tendency to hallucinate.
arXiv Detail & Related papers (2024-05-09T17:00:22Z) - Forgetting before Learning: Utilizing Parametric Arithmetic for
Knowledge Updating in Large Language Models [53.52344131257681]
We propose a new paradigm for fine-tuning called F-Learning, which employs parametric arithmetic to facilitate the forgetting of old knowledge and learning of new knowledge.
Experimental results on two publicly available datasets demonstrate that our proposed F-Learning can obviously improve the knowledge updating performance of both full fine-tuning and LoRA fine-tuning.
arXiv Detail & Related papers (2023-11-14T09:12:40Z) - An Emulator for Fine-Tuning Large Language Models using Small Language
Models [91.02498576056057]
We introduce emulated fine-tuning (EFT), a principled and practical method for sampling from a distribution that approximates the result of pre-training and fine-tuning at different scales.
We show that EFT enables test-time adjustment of competing behavioral traits like helpfulness and harmlessness without additional training.
Finally, a special case of emulated fine-tuning, which we call LM up-scaling, avoids resource-intensive fine-tuning of large pre-trained models by ensembling them with small fine-tuned models.
arXiv Detail & Related papers (2023-10-19T17:57:16Z) - Improving the Reliability of Large Language Models by Leveraging
Uncertainty-Aware In-Context Learning [76.98542249776257]
Large-scale language models often face the challenge of "hallucination"
We introduce an uncertainty-aware in-context learning framework to empower the model to enhance or reject its output in response to uncertainty.
arXiv Detail & Related papers (2023-10-07T12:06:53Z) - Preserving Commonsense Knowledge from Pre-trained Language Models via
Causal Inference [20.5696436171006]
Most existing studies attribute it to catastrophic forgetting, and they retain the pre-trained knowledge indiscriminately.
We frame fine-tuning into a causal graph and discover that the crux of catastrophic forgetting lies in the missing causal effects from the pretrained data.
In the experiments, our method outperforms state-of-the-art fine-tuning methods on all six commonsense QA datasets.
arXiv Detail & Related papers (2023-06-19T09:06:44Z) - Adaptively Integrated Knowledge Distillation and Prediction Uncertainty
for Continual Learning [71.43841235954453]
Current deep learning models often suffer from catastrophic forgetting of old knowledge when continually learning new knowledge.
Existing strategies to alleviate this issue often fix the trade-off between keeping old knowledge (stability) and learning new knowledge (plasticity)
arXiv Detail & Related papers (2023-01-18T05:36:06Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
Large language models (LLMs) have led to a series of breakthroughs in natural language processing (NLP)
What further sets these models apart is the massive amounts of world knowledge they internalize during pretraining.
How the model's world knowledge interacts with the factual information presented in the context remains under explored.
arXiv Detail & Related papers (2022-11-09T18:58:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.