Motion Forecasting in Continuous Driving
- URL: http://arxiv.org/abs/2410.06007v1
- Date: Tue, 8 Oct 2024 13:04:57 GMT
- Title: Motion Forecasting in Continuous Driving
- Authors: Nan Song, Bozhou Zhang, Xiatian Zhu, Li Zhang,
- Abstract summary: In autonomous driving, motion forecasting takes place repeatedly and continuously as the self-driving car moves.
Existing forecasting methods process each driving scene within a certain range independently.
We propose a novel motion forecasting framework for continuous driving, named RealMotion.
- Score: 41.6423398623095
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Motion forecasting for agents in autonomous driving is highly challenging due to the numerous possibilities for each agent's next action and their complex interactions in space and time. In real applications, motion forecasting takes place repeatedly and continuously as the self-driving car moves. However, existing forecasting methods typically process each driving scene within a certain range independently, totally ignoring the situational and contextual relationships between successive driving scenes. This significantly simplifies the forecasting task, making the solutions suboptimal and inefficient to use in practice. To address this fundamental limitation, we propose a novel motion forecasting framework for continuous driving, named RealMotion. It comprises two integral streams both at the scene level: (1) The scene context stream progressively accumulates historical scene information until the present moment, capturing temporal interactive relationships among scene elements. (2) The agent trajectory stream optimizes current forecasting by sequentially relaying past predictions. Besides, a data reorganization strategy is introduced to narrow the gap between existing benchmarks and real-world applications, consistent with our network. These approaches enable exploiting more broadly the situational and progressive insights of dynamic motion across space and time. Extensive experiments on Argoverse series with different settings demonstrate that our RealMotion achieves state-of-the-art performance, along with the advantage of efficient real-world inference. The source code will be available at https://github.com/fudan-zvg/RealMotion.
Related papers
- DeMo: Decoupling Motion Forecasting into Directional Intentions and Dynamic States [6.856351850183536]
We introduce DeMo, a framework that decouples multi-modal trajectory queries into two types.
By leveraging this format, we separately optimize the multi-modality and dynamic evolutionary properties of trajectories.
We additionally introduce combined Attention and Mamba techniques for global information aggregation and state sequence modeling.
arXiv Detail & Related papers (2024-10-08T12:27:49Z) - AMP: Autoregressive Motion Prediction Revisited with Next Token Prediction for Autonomous Driving [59.94343412438211]
We introduce the GPT style next token motion prediction into motion prediction.
Different from language data which is composed of homogeneous units -words, the elements in the driving scene could have complex spatial-temporal and semantic relations.
We propose to adopt three factorized attention modules with different neighbors for information aggregation and different position encoding styles to capture their relations.
arXiv Detail & Related papers (2024-03-20T06:22:37Z) - Dynamic Scenario Representation Learning for Motion Forecasting with
Heterogeneous Graph Convolutional Recurrent Networks [25.383615554172778]
We resort to dynamic heterogeneous graphs to model the evolving scenario.
We design a novel heterogeneous graphal recurrent network, aggregating diverse interaction information.
With a motion forecasting decoder, our model predicts realistic and multi-modal future trajectories of agents.
arXiv Detail & Related papers (2023-03-08T04:10:04Z) - LAformer: Trajectory Prediction for Autonomous Driving with Lane-Aware
Scene Constraints [16.861461971702596]
Trajectory prediction for autonomous driving must continuously reason the motionity of road agents and comply with scene constraints.
Existing methods typically rely on one-stage trajectory prediction models, which condition future trajectories on observed trajectories combined with fused scene information.
We present a novel method, called LAformer, which uses a temporally dense lane-aware estimation module to select only the top highly potential lane segments in an HD map.
arXiv Detail & Related papers (2023-02-27T16:34:16Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
Motion TRansformer (MTR) models motion prediction as the joint optimization of global intention localization and local movement refinement.
MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges.
arXiv Detail & Related papers (2022-09-27T16:23:14Z) - Pedestrian Stop and Go Forecasting with Hybrid Feature Fusion [87.77727495366702]
We introduce the new task of pedestrian stop and go forecasting.
Considering the lack of suitable existing datasets for it, we release TRANS, a benchmark for explicitly studying the stop and go behaviors of pedestrians in urban traffic.
We build it from several existing datasets annotated with pedestrians' walking motions, in order to have various scenarios and behaviors.
arXiv Detail & Related papers (2022-03-04T18:39:31Z) - An End-to-end Deep Reinforcement Learning Approach for the Long-term
Short-term Planning on the Frenet Space [0.0]
This paper presents a novel end-to-end continuous deep reinforcement learning approach towards autonomous cars' decision-making and motion planning.
For the first time, we define both states and action spaces on the Frenet space to make the driving behavior less variant to the road curvatures.
The algorithm generates continuoustemporal trajectories on the Frenet frame for the feedback controller to track.
arXiv Detail & Related papers (2020-11-26T02:40:07Z) - Implicit Latent Variable Model for Scene-Consistent Motion Forecasting [78.74510891099395]
In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data.
We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene.
arXiv Detail & Related papers (2020-07-23T14:31:25Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
We propose a novel model named spatial-temporal attentive network with spatial continuity (STAN-SC)
First, spatial-temporal attention mechanism is presented to explore the most useful and important information.
Second, we conduct a joint feature sequence based on the sequence and instant state information to make the generative trajectories keep spatial continuity.
arXiv Detail & Related papers (2020-03-13T04:35:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.