Temporal Reasoning Transfer from Text to Video
- URL: http://arxiv.org/abs/2410.06166v1
- Date: Tue, 8 Oct 2024 16:10:29 GMT
- Title: Temporal Reasoning Transfer from Text to Video
- Authors: Lei Li, Yuanxin Liu, Linli Yao, Peiyuan Zhang, Chenxin An, Lean Wang, Xu Sun, Lingpeng Kong, Qi Liu,
- Abstract summary: Video Large Language Models (Video LLMs) struggle with tracking temporal changes and reasoning about temporal relationships.
We introduce the Textual Temporal reasoning Transfer (T3) to transfer temporal reasoning abilities from text to video domains.
LongVA-7B model achieves competitive performance on comprehensive video benchmarks.
- Score: 51.68487044397409
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Video Large Language Models (Video LLMs) have shown promising capabilities in video comprehension, yet they struggle with tracking temporal changes and reasoning about temporal relationships. While previous research attributed this limitation to the ineffective temporal encoding of visual inputs, our diagnostic study reveals that video representations contain sufficient information for even small probing classifiers to achieve perfect accuracy. Surprisingly, we find that the key bottleneck in Video LLMs' temporal reasoning capability stems from the underlying LLM's inherent difficulty with temporal concepts, as evidenced by poor performance on textual temporal question-answering tasks. Building on this discovery, we introduce the Textual Temporal reasoning Transfer (T3). T3 synthesizes diverse temporal reasoning tasks in pure text format from existing image-text datasets, addressing the scarcity of video samples with complex temporal scenarios. Remarkably, without using any video data, T3 enhances LongVA-7B's temporal understanding, yielding a 5.3 absolute accuracy improvement on the challenging TempCompass benchmark, which enables our model to outperform ShareGPT4Video-8B trained on 28,000 video samples. Additionally, the enhanced LongVA-7B model achieves competitive performance on comprehensive video benchmarks. For example, it achieves a 49.7 accuracy on the Temporal Reasoning task of Video-MME, surpassing powerful large-scale models such as InternVL-Chat-V1.5-20B and VILA1.5-40B. Further analysis reveals a strong correlation between textual and video temporal task performance, validating the efficacy of transferring temporal reasoning abilities from text to video domains.
Related papers
- TemporalBench: Benchmarking Fine-grained Temporal Understanding for Multimodal Video Models [75.42002690128486]
TemporalBench is a new benchmark dedicated to evaluating fine-grained temporal understanding in videos.
It consists of 10K video question-answer pairs, derived from 2K high-quality human annotations detailing the temporal dynamics in video clips.
Results show that state-of-the-art models like GPT-4o achieve only 38.5% question answering accuracy on TemporalBench.
arXiv Detail & Related papers (2024-10-14T17:59:58Z) - ReXTime: A Benchmark Suite for Reasoning-Across-Time in Videos [24.502570960589182]
ReXTime is a benchmark designed to rigorously test AI models' ability to perform temporal reasoning within video events.
We develop an automated pipeline for generating temporal reasoning question-answer pairs.
Our pipeline creates a training dataset of 9,695 machine generated samples without manual effort.
arXiv Detail & Related papers (2024-06-27T17:59:45Z) - The Surprising Effectiveness of Multimodal Large Language Models for Video Moment Retrieval [36.516226519328015]
Video-language tasks necessitate spatial and temporal comprehension and require significant compute.
This work demonstrates the surprising effectiveness of leveraging image-text pretrained MLLMs for moment retrieval.
We achieve a new state-of-the-art in moment retrieval on the widely used benchmarks Charades-STA, QVHighlights, and ActivityNet Captions.
arXiv Detail & Related papers (2024-06-26T06:59:09Z) - MLLM as Video Narrator: Mitigating Modality Imbalance in Video Moment Retrieval [53.417646562344906]
Video Moment Retrieval (VMR) aims to localize a specific temporal segment within an untrimmed long video given a natural language query.
Existing methods often suffer from inadequate training annotations, i.e., the sentence typically matches with a fraction of the prominent video content in the foreground with limited wording diversity.
This intrinsic modality imbalance leaves a considerable portion of visual information remaining unaligned with text.
In this work, we take an MLLM as a video narrator to generate plausible textual descriptions of the video, thereby mitigating the modality imbalance and boosting the temporal localization.
arXiv Detail & Related papers (2024-06-25T18:39:43Z) - LITA: Language Instructed Temporal-Localization Assistant [71.68815100776278]
We introduce time tokens that encode timestamps relative to the video length to better represent time in videos.
We also introduce SlowFast tokens in the architecture to capture temporal information at fine temporal resolution.
We show that our emphasis on temporal localization also substantially improves video-based text generation compared to existing Video LLMs.
arXiv Detail & Related papers (2024-03-27T22:50:48Z) - VaQuitA: Enhancing Alignment in LLM-Assisted Video Understanding [63.075626670943116]
We introduce a cutting-edge framework, VaQuitA, designed to refine the synergy between video and textual information.
At the data level, instead of sampling frames uniformly, we implement a sampling method guided by CLIP-score rankings.
At the feature level, we integrate a trainable Video Perceiver alongside a Visual-Query Transformer.
arXiv Detail & Related papers (2023-12-04T19:48:02Z) - Revisiting the "Video" in Video-Language Understanding [56.15777956496518]
We propose the atemporal probe (ATP), a new model for video-language analysis.
We characterize the limitations and potential of current video-language benchmarks.
We show that effectively integrating ATP into full video-level temporal models can improve efficiency and state-of-the-art accuracy.
arXiv Detail & Related papers (2022-06-03T17:57:33Z) - Video Summarization through Reinforcement Learning with a 3D
Spatio-Temporal U-Net [15.032516344808526]
We introduce 3DST-UNet-RL framework for video summarization.
We show experimental evidence for the effectiveness of 3DST-UNet-RL on two commonly used general video summarization benchmarks.
The proposed video summarization has the potential to save storage costs of ultrasound screening videos as well as to increase efficiency when browsing patient video data during retrospective analysis.
arXiv Detail & Related papers (2021-06-19T16:27:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.