SD-$π$XL: Generating Low-Resolution Quantized Imagery via Score Distillation
- URL: http://arxiv.org/abs/2410.06236v1
- Date: Tue, 8 Oct 2024 17:48:01 GMT
- Title: SD-$π$XL: Generating Low-Resolution Quantized Imagery via Score Distillation
- Authors: Alexandre Binninger, Olga Sorkine-Hornung,
- Abstract summary: Low-resolution quantized imagery, such as pixel art, is seeing a revival in modern applications.
We introduce SD-$pi$XL, an approach for producing quantized images that employs score distillation sampling in conjunction with a differentiable image generator.
We show that our method is the ability to transform input images into low-resolution, quantized versions while retaining their key semantic features.
- Score: 64.40561867379627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Low-resolution quantized imagery, such as pixel art, is seeing a revival in modern applications ranging from video game graphics to digital design and fabrication, where creativity is often bound by a limited palette of elemental units. Despite their growing popularity, the automated generation of quantized images from raw inputs remains a significant challenge, often necessitating intensive manual input. We introduce SD-$\pi$XL, an approach for producing quantized images that employs score distillation sampling in conjunction with a differentiable image generator. Our method enables users to input a prompt and optionally an image for spatial conditioning, set any desired output size $H \times W$, and choose a palette of $n$ colors or elements. Each color corresponds to a distinct class for our generator, which operates on an $H \times W \times n$ tensor. We adopt a softmax approach, computing a convex sum of elements, thus rendering the process differentiable and amenable to backpropagation. We show that employing Gumbel-softmax reparameterization allows for crisp pixel art effects. Unique to our method is the ability to transform input images into low-resolution, quantized versions while retaining their key semantic features. Our experiments validate SD-$\pi$XL's performance in creating visually pleasing and faithful representations, consistently outperforming the current state-of-the-art. Furthermore, we showcase SD-$\pi$XL's practical utility in fabrication through its applications in interlocking brick mosaic, beading and embroidery design.
Related papers
- Meissonic: Revitalizing Masked Generative Transformers for Efficient High-Resolution Text-to-Image Synthesis [62.06970466554273]
We present Meissonic, which non-autoregressive masked image modeling (MIM) text-to-image elevates to a level comparable with state-of-the-art diffusion models like SDXL.
We leverage high-quality training data, integrate micro-conditions informed by human preference scores, and employ feature compression layers to further enhance image fidelity and resolution.
Our model not only matches but often exceeds the performance of existing models like SDXL in generating high-quality, high-resolution images.
arXiv Detail & Related papers (2024-10-10T17:59:17Z) - VIP: Versatile Image Outpainting Empowered by Multimodal Large Language Model [76.02314305164595]
This work presents a novel image outpainting framework that is capable of customizing the results according to the requirement of users.
We take advantage of a Multimodal Large Language Model (MLLM) that automatically extracts and organizes the corresponding textual descriptions of the masked and unmasked part of a given image.
In addition, a special Cross-Attention module, namely Center-Total-Surrounding (CTS), is elaborately designed to enhance further the the interaction between specific space regions of the image and corresponding parts of the text prompts.
arXiv Detail & Related papers (2024-06-03T07:14:19Z) - Transformer based Pluralistic Image Completion with Reduced Information Loss [72.92754600354199]
Transformer based methods have achieved great success in image inpainting recently.
They regard each pixel as a token, thus suffering from an information loss issue.
We propose a new transformer based framework called "PUT"
arXiv Detail & Related papers (2024-03-31T01:20:16Z) - Arbitrary-Scale Image Generation and Upsampling using Latent Diffusion Model and Implicit Neural Decoder [29.924160271522354]
Super-resolution (SR) and image generation are important tasks in computer vision and are widely adopted in real-world applications.
Most existing methods, however, generate images only at fixed-scale magnification and suffer from over-smoothing and artifacts.
Most relevant work applied Implicit Neural Representation (INR) to the denoising diffusion model to obtain continuous-resolution yet diverse and high-quality SR results.
We propose a novel pipeline that can super-resolve an input image or generate from a random noise a novel image at arbitrary scales.
arXiv Detail & Related papers (2024-03-15T12:45:40Z) - HINT: High-quality INPainting Transformer with Mask-Aware Encoding and
Enhanced Attention [14.055584700641212]
Existing image inpainting methods leverage convolution-based downsampling approaches to reduce spatial dimensions.
We propose an end-to-end High-quality INpainting Transformer, abbreviated as HINT, which consists of a novel mask-aware pixel-shuffle downsampling module.
We demonstrate the superior performance of HINT compared to contemporary state-of-the-art models on four datasets.
arXiv Detail & Related papers (2024-02-22T00:14:26Z) - Cascaded Cross-Attention Networks for Data-Efficient Whole-Slide Image
Classification Using Transformers [0.11219061154635457]
Whole-Slide Imaging allows for the capturing and digitization of high-resolution images of histological specimen.
transformer architecture has been proposed as a possible candidate for effectively leveraging the high-resolution information.
We propose a novel cascaded cross-attention network (CCAN) based on the cross-attention mechanism that scales linearly with the number of extracted patches.
arXiv Detail & Related papers (2023-05-11T16:42:24Z) - Raising The Limit Of Image Rescaling Using Auxiliary Encoding [7.9700865143145485]
Recently, image rescaling models like IRN utilize the bidirectional nature of INN to push the performance limit of image upscaling.
We propose auxiliary encoding modules to further push the limit of image rescaling performance.
arXiv Detail & Related papers (2023-03-12T20:49:07Z) - High-Resolution GAN Inversion for Degraded Images in Large Diverse
Datasets [39.21692649763314]
In this paper, we present a novel GAN inversion framework that utilizes the powerful generative ability of StyleGAN-XL.
To ease the inversion challenge with StyleGAN-XL, Clustering & Regularize Inversion (CRI) is proposed.
We validate our CRI scheme on multiple restoration tasks (i.e., inpainting, colorization, and super-resolution) of complex natural images, and show preferable quantitative and qualitative results.
arXiv Detail & Related papers (2023-02-07T11:24:11Z) - MAT: Mask-Aware Transformer for Large Hole Image Inpainting [79.67039090195527]
We present a novel model for large hole inpainting, which unifies the merits of transformers and convolutions.
Experiments demonstrate the state-of-the-art performance of the new model on multiple benchmark datasets.
arXiv Detail & Related papers (2022-03-29T06:36:17Z) - Swapping Autoencoder for Deep Image Manipulation [94.33114146172606]
We propose the Swapping Autoencoder, a deep model designed specifically for image manipulation.
The key idea is to encode an image with two independent components and enforce that any swapped combination maps to a realistic image.
Experiments on multiple datasets show that our model produces better results and is substantially more efficient compared to recent generative models.
arXiv Detail & Related papers (2020-07-01T17:59:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.