Multi-label Classification for Android Malware Based on Active Learning
- URL: http://arxiv.org/abs/2410.06444v1
- Date: Wed, 9 Oct 2024 01:09:24 GMT
- Title: Multi-label Classification for Android Malware Based on Active Learning
- Authors: Qijing Qiao, Ruitao Feng, Sen Chen, Fei Zhang, Xiaohong Li,
- Abstract summary: We propose MLCDroid, an ML-based multi-label classification approach that can directly indicate the existence of pre-defined malicious behaviors.
We compare the results of 70 algorithm combinations to evaluate the effectiveness (best at 73.3%).
This is the first multi-label Android malware classification approach intending to provide more information on fine-grained malicious behaviors.
- Score: 7.599125552187342
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The existing malware classification approaches (i.e., binary and family classification) can barely benefit subsequent analysis with their outputs. Even the family classification approaches suffer from lacking a formal naming standard and an incomplete definition of malicious behaviors. More importantly, the existing approaches are powerless for one malware with multiple malicious behaviors, while this is a very common phenomenon for Android malware in the wild. So, neither of them can provide researchers with a direct and comprehensive enough understanding of malware. In this paper, we propose MLCDroid, an ML-based multi-label classification approach that can directly indicate the existence of pre-defined malicious behaviors. With an in-depth analysis, we summarize six basic malicious behaviors from real-world malware with security reports and construct a labeled dataset. We compare the results of 70 algorithm combinations to evaluate the effectiveness (best at 73.3%). Faced with the challenge of the expensive cost of data annotation, we further propose an active learning approach based on data augmentation, which can improve the overall accuracy to 86.7% with a data augmentation of 5,000+ high-quality samples from an unlabeled malware dataset. This is the first multi-label Android malware classification approach intending to provide more information on fine-grained malicious behaviors.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - MalDICT: Benchmark Datasets on Malware Behaviors, Platforms, Exploitation, and Packers [44.700094741798445]
Existing research on malware classification focuses almost exclusively on two tasks: distinguishing between malicious and benign files and classifying malware by family.
We have identified four tasks which are under-represented in prior work: classification by behaviors that malware exhibit, platforms that malware run on, vulnerabilities that malware exploit, and packers that malware are packed with.
We are releasing benchmark datasets for each of these four classification tasks, tagged using ClarAVy and comprising nearly 5.5 million malicious files in total.
arXiv Detail & Related papers (2023-10-18T04:36:26Z) - EMBERSim: A Large-Scale Databank for Boosting Similarity Search in
Malware Analysis [48.5877840394508]
In recent years there has been a shift from quantifications-based malware detection towards machine learning.
We propose to address the deficiencies in the space of similarity research on binary files, starting from EMBER.
We enhance EMBER with similarity information as well as malware class tags, to enable further research in the similarity space.
arXiv Detail & Related papers (2023-10-03T06:58:45Z) - Semi-supervised Classification of Malware Families Under Extreme Class Imbalance via Hierarchical Non-Negative Matrix Factorization with Automatic Model Selection [34.7994627734601]
We propose a novel hierarchical semi-supervised algorithm, which can be used in the early stages of the malware family labeling process.
With HNMFk, we exploit the hierarchical structure of the malware data together with a semi-supervised setup, which enables us to classify malware families under conditions of extreme class imbalance.
Our solution can perform abstaining predictions, or rejection option, which yields promising results in the identification of novel malware families.
arXiv Detail & Related papers (2023-09-12T23:45:59Z) - Towards a Fair Comparison and Realistic Design and Evaluation Framework
of Android Malware Detectors [63.75363908696257]
We analyze 10 influential research works on Android malware detection using a common evaluation framework.
We identify five factors that, if not taken into account when creating datasets and designing detectors, significantly affect the trained ML models.
We conclude that the studied ML-based detectors have been evaluated optimistically, which justifies the good published results.
arXiv Detail & Related papers (2022-05-25T08:28:08Z) - New Datasets for Dynamic Malware Classification [0.0]
We introduce two new, updated datasets of malicious software, VirusSamples and VirusShare.
This paper analyzes multi-class malware classification performance of the balanced and imbalanced version of these two datasets.
Results show that Support Vector Machine, achieves the highest score of 94% in the imbalanced VirusSample dataset.
XGBoost, one of the most common gradient boosting-based models, achieves the highest score of 90% and 80%.in both versions of the VirusShare dataset.
arXiv Detail & Related papers (2021-11-30T08:31:16Z) - MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels [21.050311121388813]
We have created the Malware Open-source Threat Intelligence Family (MOTIF) dataset.
MOTIF contains 3,095 malware samples from 454 families, making it the largest and most diverse public malware dataset.
We provide aliases of the different names used to describe the same malware family, allowing us to benchmark for the first time accuracy of existing tools.
arXiv Detail & Related papers (2021-11-29T23:59:50Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - DAEMON: Dataset-Agnostic Explainable Malware Classification Using
Multi-Stage Feature Mining [3.04585143845864]
Malware classification is the task of determining to which family a new malicious variant belongs.
We present DAEMON, a novel dataset-agnostic malware classification tool.
arXiv Detail & Related papers (2020-08-04T21:57:30Z) - Maat: Automatically Analyzing VirusTotal for Accurate Labeling and
Effective Malware Detection [71.84087757644708]
The malware analysis and detection research community relies on the online platform VirusTotal to label Android apps based on the scan results of around 60 scanners.
There are no standards on how to best interpret the scan results acquired from VirusTotal, which leads to the utilization of different threshold-based labeling strategies.
We implemented a method, Maat, that tackles these issues of standardization and sustainability by automatically generating a Machine Learning (ML)-based labeling scheme.
arXiv Detail & Related papers (2020-07-01T14:15:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.