Happy: A Debiased Learning Framework for Continual Generalized Category Discovery
- URL: http://arxiv.org/abs/2410.06535v2
- Date: Thu, 10 Oct 2024 03:10:47 GMT
- Title: Happy: A Debiased Learning Framework for Continual Generalized Category Discovery
- Authors: Shijie Ma, Fei Zhu, Zhun Zhong, Wenzhuo Liu, Xu-Yao Zhang, Cheng-Lin Liu,
- Abstract summary: This paper explores the underexplored task of Continual Generalized Category Discovery (C-GCD)
C-GCD aims to incrementally discover new classes from unlabeled data while maintaining the ability to recognize previously learned classes.
We introduce a debiased learning framework, namely Happy, characterized by Hardness-aware prototype sampling and soft entropy regularization.
- Score: 54.54153155039062
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Constantly discovering novel concepts is crucial in evolving environments. This paper explores the underexplored task of Continual Generalized Category Discovery (C-GCD), which aims to incrementally discover new classes from unlabeled data while maintaining the ability to recognize previously learned classes. Although several settings are proposed to study the C-GCD task, they have limitations that do not reflect real-world scenarios. We thus study a more practical C-GCD setting, which includes more new classes to be discovered over a longer period, without storing samples of past classes. In C-GCD, the model is initially trained on labeled data of known classes, followed by multiple incremental stages where the model is fed with unlabeled data containing both old and new classes. The core challenge involves two conflicting objectives: discover new classes and prevent forgetting old ones. We delve into the conflicts and identify that models are susceptible to prediction bias and hardness bias. To address these issues, we introduce a debiased learning framework, namely Happy, characterized by Hardness-aware prototype sampling and soft entropy regularization. For the prediction bias, we first introduce clustering-guided initialization to provide robust features. In addition, we propose soft entropy regularization to assign appropriate probabilities to new classes, which can significantly enhance the clustering performance of new classes. For the harness bias, we present the hardness-aware prototype sampling, which can effectively reduce the forgetting issue for previously seen classes, especially for difficult classes. Experimental results demonstrate our method proficiently manages the conflicts of C-GCD and achieves remarkable performance across various datasets, e.g., 7.5% overall gains on ImageNet-100. Our code is publicly available at https://github.com/mashijie1028/Happy-CGCD.
Related papers
- PASS++: A Dual Bias Reduction Framework for Non-Exemplar Class-Incremental Learning [49.240408681098906]
Class-incremental learning (CIL) aims to recognize new classes incrementally while maintaining the discriminability of old classes.
Most existing CIL methods are exemplar-based, i.e., storing a part of old data for retraining.
We present a simple and novel dual bias reduction framework that employs self-supervised transformation (SST) in input space and prototype augmentation (protoAug) in deep feature space.
arXiv Detail & Related papers (2024-07-19T05:03:16Z) - Towards Non-Exemplar Semi-Supervised Class-Incremental Learning [33.560003528712414]
Class-incremental learning aims to gradually recognize new classes while maintaining the discriminability of old ones.
We propose a non-exemplar semi-supervised CIL framework with contrastive learning and semi-supervised incremental prototype classifier (Semi-IPC)
Semi-IPC learns a prototype for each class with unsupervised regularization, enabling the model to incrementally learn from partially labeled new data.
arXiv Detail & Related papers (2024-03-27T06:28:19Z) - Active Generalized Category Discovery [60.69060965936214]
Generalized Category Discovery (GCD) endeavors to cluster unlabeled samples from both novel and old classes.
We take the spirit of active learning and propose a new setting called Active Generalized Category Discovery (AGCD)
Our method achieves state-of-the-art performance on both generic and fine-grained datasets.
arXiv Detail & Related papers (2024-03-07T07:12:24Z) - MetaGCD: Learning to Continually Learn in Generalized Category Discovery [26.732455383707798]
We consider a real-world scenario where a model that is trained on pre-defined classes continually encounters unlabeled data.
The goal is to continually discover novel classes while maintaining the performance in known classes.
We propose an approach, called MetaGCD, to learn how to incrementally discover with less forgetting.
arXiv Detail & Related papers (2023-08-21T22:16:49Z) - Dynamic Conceptional Contrastive Learning for Generalized Category
Discovery [76.82327473338734]
Generalized category discovery (GCD) aims to automatically cluster partially labeled data.
Unlabeled data contain instances that are not only from known categories of the labeled data but also from novel categories.
One effective way for GCD is applying self-supervised learning to learn discriminate representation for unlabeled data.
We propose a Dynamic Conceptional Contrastive Learning framework, which can effectively improve clustering accuracy.
arXiv Detail & Related papers (2023-03-30T14:04:39Z) - Novel Class Discovery without Forgetting [72.52222295216062]
We identify and formulate a new, pragmatic problem setting of NCDwF: Novel Class Discovery without Forgetting.
We propose a machine learning model to incrementally discover novel categories of instances from unlabeled data.
We introduce experimental protocols based on CIFAR-10, CIFAR-100 and ImageNet-1000 to measure the trade-off between knowledge retention and novel class discovery.
arXiv Detail & Related papers (2022-07-21T17:54:36Z) - Class-incremental Learning with Rectified Feature-Graph Preservation [24.098892115785066]
A central theme of this paper is to learn new classes that arrive in sequential phases over time.
We propose a weighted-Euclidean regularization for old knowledge preservation.
We show how it can work with binary cross-entropy to increase class separation for effective learning of new classes.
arXiv Detail & Related papers (2020-12-15T07:26:04Z) - Learning Adaptive Embedding Considering Incremental Class [55.21855842960139]
Class-Incremental Learning (CIL) aims to train a reliable model with the streaming data, which emerges unknown classes sequentially.
Different from traditional closed set learning, CIL has two main challenges: 1) Novel class detection.
After the novel classes are detected, the model needs to be updated without re-training using entire previous data.
arXiv Detail & Related papers (2020-08-31T04:11:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.