Entanglement enhancement induced by noise in inhomogeneously monitored systems
- URL: http://arxiv.org/abs/2410.06712v1
- Date: Wed, 9 Oct 2024 09:35:06 GMT
- Title: Entanglement enhancement induced by noise in inhomogeneously monitored systems
- Authors: Cristiano Muzzi, Mikheil Tsitsishvili, Giuliano Chiriacò,
- Abstract summary: We study how stronger noise can enhance the entanglement in inhomogeneously monitored quantum systems.
Our results demonstrate that, contrary to the detrimental effects typically associated with noise, certain regimes of noise on the ancilla can significantly enhance entanglement within the system.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study how stronger noise can enhance the entanglement in inhomogeneously monitored quantum systems. We consider a free fermions model composed of two coupled chains - a system chain and an ancilla chain, each subject to its own different noise - and explore the dynamics of entanglement within the system chain under different noise intensities. Our results demonstrate that, contrary to the detrimental effects typically associated with noise, certain regimes of noise on the ancilla can significantly enhance entanglement within the system. Numerical simulations demonstrate the robustness of such entanglement enhancement across various system sizes and noise parameters. This enhancement is found to be highly dependent on the hopping strength in the ancilla, suggesting that the interplay between unitary dynamics and noise can be tuned to optimize the entanglement of a quantum system.
Related papers
- Characterizing Noise of Driven Controlled Field Using the Central Spin Model [0.0]
We analyze the coherence dynamics of a central spin coupled to a spin chain with a time-dependent noisy magnetic field.
Our results show that decoherency due to the nonequilibrium critical dynamics of the environment is amplified in the presence of uncorrelated and correlated noise.
Our findings have potential applications in the noise spectroscopy of external signals.
arXiv Detail & Related papers (2024-09-02T17:12:00Z) - Stochastic action for the entanglement of a noisy monitored two-qubit
system [55.2480439325792]
We study the effect of local unitary noise on the entanglement evolution of a two-qubit system subject to local monitoring and inter-qubit coupling.
We construct a Hamiltonian by incorporating the noise into the Chantasri-Dressel-Jordan path integral and use it to identify the optimal entanglement dynamics.
Numerical investigation of long-time steady-state entanglement reveals a non-monotonic relationship between concurrence and noise strength.
arXiv Detail & Related papers (2024-03-13T11:14:10Z) - Resonance fluorescence of noisy systems [0.0]
We develop a theory of resonance fluorescence in the low excitation limit on systems in which the transition energy is subject to noise.
We show that different classes of noise influence the RF spectrum in a characteristic way.
arXiv Detail & Related papers (2023-03-02T19:00:35Z) - Coherent feedback control of quantum correlations in cavity
magnomechanical system with magnon squeezing [0.0]
We address a scheme to enhance the quantum correlations in cavity opto-magnomechanical system by using the coherent feedback loop in the presence of magnon squeezing.
We also study the Einstein-Podolsky-Rosen steering and one-way steering in the presence of thermal effects without imposing additional conditions of asymmetric losses or noises in the subsystems.
arXiv Detail & Related papers (2023-02-16T20:18:57Z) - Autonomous coherence protection of a two-level system in a fluctuating
environment [68.8204255655161]
We re-examine a scheme originally intended to remove the effects of static Doppler broadening from an ensemble of non-interacting two-level systems (qubits)
We demonstrate that this scheme is far more powerful and can also protect a single (or even an ensemble) qubit's energy levels from noise which depends on both time and space.
arXiv Detail & Related papers (2023-02-08T01:44:30Z) - Inference and Denoise: Causal Inference-based Neural Speech Enhancement [83.4641575757706]
This study addresses the speech enhancement (SE) task within the causal inference paradigm by modeling the noise presence as an intervention.
The proposed causal inference-based speech enhancement (CISE) separates clean and noisy frames in an intervened noisy speech using a noise detector and assigns both sets of frames to two mask-based enhancement modules (EMs) to perform noise-conditional SE.
arXiv Detail & Related papers (2022-11-02T15:03:50Z) - Stabilizing and improving qubit coherence by engineering noise spectrum
of two-level systems [52.77024349608834]
Superconducting circuits are a leading platform for quantum computing.
Charge fluctuators inside amorphous oxide layers contribute to both low-frequency $1/f$ charge noise and high-frequency dielectric loss.
We propose to mitigate those harmful effects by engineering the relevant TLS noise spectral densities.
arXiv Detail & Related papers (2022-06-21T18:37:38Z) - Learning Noise via Dynamical Decoupling of Entangled Qubits [49.38020717064383]
Noise in entangled quantum systems is difficult to characterize due to many-body effects involving multiple degrees of freedom.
We develop and apply multi-qubit dynamical decoupling sequences that characterize noise that occurs during two-qubit gates.
arXiv Detail & Related papers (2022-01-26T20:22:38Z) - Frequency fluctuations of ferromagnetic resonances at milliKelvin
temperatures [50.591267188664666]
Noise is detrimental to device performance, especially for quantum coherent circuits.
Recent efforts have demonstrated routes to utilizing magnon systems for quantum technologies, which are based on single magnons to superconducting qubits.
Researching the temporal behavior can help to identify the underlying noise sources.
arXiv Detail & Related papers (2021-07-14T08:00:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.