Engineering the Nonlinearity of Bosonic Modes with a Multi-loop SQUID
- URL: http://arxiv.org/abs/2410.06904v1
- Date: Wed, 9 Oct 2024 14:07:40 GMT
- Title: Engineering the Nonlinearity of Bosonic Modes with a Multi-loop SQUID
- Authors: Ziyue Hua, Yifang Xu, Weiting Wang, Yuwei Ma, Jie Zhou, Weizhou Cai, Hao Ai, Yu-xi Liu, Ming Li, Chang-Ling Zou, Luyan Sun,
- Abstract summary: Engineering high-order nonlinearities while suppressing lower-order terms is crucial for quantum error correction and state control in bosonic systems.
NEMS devices selectively engineer pure cubic, quartic, and quintic interactions with parasitic couplings.
This work enables sophisticated and precise manipulation of bosonic modes, with potential applications in quantum qubits, simulation, and sensing.
- Score: 16.780935092619103
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Engineering high-order nonlinearities while suppressing lower-order terms is crucial for quantum error correction and state control in bosonic systems, yet it remains an outstanding challenge. Here, we introduce a general framework of Nonlinearity-Engineered Multi-loop SQUID (NEMS) device, enabling the realization of arbitrary nonlinearities by tuning fluxes in multiple loops within superconducting circuits. We demonstrate specific examples of NEMS devices that selectively engineer pure cubic, quartic, and quintic interactions with suppressed parasitic couplings, showing great promise for realizing Kerr-cat bias-preserving {\scshape cnot} gates and stabilizing four-leg cat qubits. By opening new avenues for tailoring nonlinear Hamiltonians of superconducting devices, this work enables sophisticated and precise manipulation of bosonic modes, with potential applications in quantum computation, simulation, and sensing.
Related papers
- Universal control of a bosonic mode via drive-activated native cubic
interactions [0.3273124984242396]
Linear bosonic modes offer a hardware-efficient alternative for quantum information processing.
The lack of nonlinearity in photonics has led to encoded measurement-based quantum computing.
We demonstrate universal control of a bosonic mode composed of a superconducting nonlinear asymmetric inductive element.
arXiv Detail & Related papers (2023-08-29T14:13:41Z) - Quantum noise dynamics in nonlinear pulse propagation [0.0]
We numerically study quantum noise dynamics and multimode entanglement in several ultrafast systems.
We show that our model exhibits nonlinear dynamics in both the mean field and the quantum correlations.
arXiv Detail & Related papers (2023-07-11T17:50:33Z) - Floquet-engineered nonlinearities and controllable pair-hopping
processes: From optical Kerr cavities to correlated quantum matter [0.0]
This work explores the possibility of creating and controlling unconventional nonlinearities by periodic driving.
By means of a parent quantum many-body description, we demonstrate that such driven systems are well captured by an effective NLSE.
We analyze these intriguing properties both in the weakly-interacting (mean-field) regime, captured by the effective NLSE, and in the strongly-correlated quantum regime.
arXiv Detail & Related papers (2023-04-12T13:56:27Z) - Resolving Fock states near the Kerr-free point of a superconducting
resonator [51.03394077656548]
We have designed a tunable nonlinear resonator terminated by a SNAIL (Superconducting Asymmetric Inductive eLement)
We have excited photons near this Kerr-free point and characterized the device using a transmon qubit.
arXiv Detail & Related papers (2022-10-18T09:55:58Z) - Designing Kerr Interactions for Quantum Information Processing via
Counterrotating Terms of Asymmetric Josephson-Junction Loops [68.8204255655161]
static cavity nonlinearities typically limit the performance of bosonic quantum error-correcting codes.
Treating the nonlinearity as a perturbation, we derive effective Hamiltonians using the Schrieffer-Wolff transformation.
Results show that a cubic interaction allows to increase the effective rates of both linear and nonlinear operations.
arXiv Detail & Related papers (2021-07-14T15:11:05Z) - A low-loss ferrite circulator as a tunable chiral quantum system [108.66477491099887]
We demonstrate a low-loss waveguide circulator constructed with single-crystalline yttrium iron garnet (YIG) in a 3D cavity.
We show the coherent coupling of its chiral internal modes with integrated superconducting niobium cavities.
We also probe experimentally the effective non-Hermitian dynamics of this system and its effective non-reciprocal eigenmodes.
arXiv Detail & Related papers (2021-06-21T17:34:02Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Photon-Number-Dependent Hamiltonian Engineering for Cavities [3.1541105002077714]
We develop a scheme to engineer a target Hamiltonian for photonic cavities using ancilla qubits.
The engineered Hamiltonian admits various applications including canceling unwanted cavity self-Kerr interactions.
Our scheme can be implemented with coupled microwave cavities and transmon qubits in superconducting circuit systems.
arXiv Detail & Related papers (2020-09-16T18:00:02Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Waveguide Bandgap Engineering with an Array of Superconducting Qubits [101.18253437732933]
We experimentally study a metamaterial made of eight superconducting transmon qubits with local frequency control.
We observe the formation of super- and subradiant states, as well as the emergence of a polaritonic bandgap.
The circuit of this work extends experiments with one and two qubits towards a full-blown quantum metamaterial.
arXiv Detail & Related papers (2020-06-05T09:27:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.